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ABSTRACT
This paper considers the problem of imputation model uncertainty in the context of missing
data problems. We argue that so-called “Bayesianly proper” approaches to multiple imput-
ation, although correctly accounting for uncertainty in imputation model parameters, ignore
the uncertainty in the imputation model itself. We address imputation model uncertainty by
implementing Bayesian model averaging as part of the imputation process. Bayesian model
averaging accounts for both model and parameter uncertainty, and thus we argue is fully
Bayesianly proper. We apply Bayesian model averaging to multiple imputation under the
fully conditional specification approach. An extensive simulation study is conducted compar-
ing our Bayesian model averaging approach against normal theory-based Bayesian imput-
ation not accounting for model uncertainty. Across almost all conditions of the simulation
study, the results reveal the extent of model uncertainty in multiple imputation and a con-
sistent advantage to our Bayesian model averaging approach over normal-theory multiple
imputation under missing-at-random and missing-completely-at random in terms of
Kullback-Liebler divergence and mean squared prediction error. A small case study is also
presented. Directions for future research are discussed.
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Introduction

Multiple imputation (MI) (Rubin, 1987) is arguably the
gold-standard in addressing problems of missing data.
Taken as a generic idea, multiple imputation can be
implemented under three general approaches (Enders,
2010; Little & Rubin, 2002; van Buuren, 2012):
(a) monotone data imputation, (b) joint modeling,
and (c) fully conditional specification. For monotone
data imputation, a series of univariate methods are
constructed to impute the missing data. The joint mod-
eling and fully conditional specification approaches are
for more general patterns of missing data. Specifically,
under the joint modeling approach, imputations are
obtained from a multivariate model applied to the
data. Under the fully conditional specification approach
(also referred to as chained equations or sequential
regressions), imputation is conducted by specifying
conditional univariate regressions across iterated
conditional models (van Buuren, 2012).

The orientation of this paper is from the viewpoint
of an imputer who is tasked with providing an
imputed data set to a secondary user. This orientation
is quite common in large-scale survey research. Thus,

we situate our discussion of multiple imputation within
the framework of congenial missing data problems. The
concept of congeniality in missing data problems was
introduced by Meng (1994, see also Rubin, 1996;
Kaplan & Su, 2018). In outlining the steps in conduct-
ing a large-scale survey, Meng (1994) pointed out that
each step in the construction of a large-scale survey
inherits information from the previous step. That is,
the data file that a researcher uses is the result of a set
of design steps which includes, in important ways,
decisions that are made regarding the imputation of
missing data. In many cases, as Meng (1994) notes, the
imputer charged with decisions regarding missing data
imputation has little or no contact with the secondary
user of the data. Thus, if analysts are interested in
conducting a secondary statistical analysis using the
data, then their statistical models might have little in
common with the model used to impute the missing
data and this “disconnect” can lead to serious biases.
Quoting Meng (1994, p. 539)

“… uncongeniality… essentially means that the
analysis procedure does not correspond to the
imputation model. The uncongeniality arises when
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the analyst and the imputer have access to different
amounts and sources of information, and have
different assessments (e.g., explicit model, implicit
judgement) about both responses and non-responses.
If the imputer’s assessment is far from reality, then,
as Rubin (1995)1 wrote, “all methods for handling
nonresponse are in trouble” based on such an
assessment; all statistical inferences need underlying
key assumptions to hold at least approximately. If the
imputer’s model is reasonably accurate, then
following the multiple-imputation recipe prevents the
analyst from producing inferences with serious
nonresponse biases.”

The problem of uncongeniality has led to the gen-
eral principle that one should include as many varia-
bles as possible in the imputation model for the
missing data (see e.g. Rubin, 1996). However, to quote
Murray (2018, pg. 7),

“Unless the analyst is the imputer, congeniality is less
a condition we should try to satisfy than one we
should try to fail gracefully…”

That is, although we recognize that congeniality is
a critical issue, for the present paper, we are focusing
more on the problem of capturing imputation
model uncertainty than having captured the correct
imputation model.

Proper versus Bayesianly proper imputations

Overarching the various methods of multiple imput-
ation, Rubin (1987) introduced the idea of so-called
proper imputations. The notion of proper imputations
relates to the asymptotic properties of the statistics
of interest obtained from the imputation process over
an infinitely large number of imputed data sets.
Following Rubin (1987), let m represent the
number of multiply imputed (completed) data sets
(m ¼ 1, 2, :::,M); Q̂m represent a statistic such as a
mean which estimates the corresponding parameter Q
on each of the m completed data sets; and Um be the
sampling variability of Q̂m for each of the m com-
pleted data sets. Furthermore, let �Qm and let �Um be
the corresponding averages across the data sets, and
let Bm be the variance among the m completed
data sets.

Next, consider the notion of randomization-based
inference, in which the question concerns the behav-
ior of the statistic of interest under a randomization
distribution and a specified null hypothesis. Under
randomization-based inference, proper imputations
imply that the statistics ð�Q1, �U1,B1Þ yield valid

inferences for the corresponding complete-data values
ðQ̂,UÞ. Valid inferences can be obtained from Rubin’s
(1987) combining rules. In essence, if Rubin’s (1987)
combining rules yield consistent and asymptotically
normal estimators then the imputations are proper
(Rubin, 1987).

The randomization-based justification for multiple
imputation outlined by Rubin (1987) is relevant for
frequentist or design-based frameworks for statistical
inference. Rubin also provides a Bayesian justification
for multiple imputation, and this is more fully dis-
cussed in Schafer (1997). Under the Bayesian frame-
work, let Ymis represent observations on Y that are
missing, and let Yobs represent observations on Y that
are observed. Then, assuming some complete data
model and priors for the model parameters, say h, the
posterior predictive distribution of the missing data
can be written as

pðYmisjYobsÞ ¼
ð
pðYmisjYobs, hÞpðhjYobsÞdh, (1)

where pðhjYobsÞ is the posterior distribution of the
parameters given the observed data. The posterior dis-
tribution of the parameters can, in turn, be decom-
posed into the product of the data distribution and
the prior distribution of the model parameters via
Bayes’ theorem – namely,

pðhjYobsÞ / pðYobsjhÞpðhÞ, (2)

where pðYobsjhÞ is the distribution of the observed
data given the model parameters h, and pðhÞ is the
prior distribution on the model parameters. Thus, as
long as imputations are the result of independent real-
izations of equation (1), they are said to be Bayesianly
proper (Schafer, 1997).

Bayesianly proper imputations address uncertainty
in the imputation process through the prior distribu-
tions placed on the model parameters in equation (2).
However, model parameters are not the only sources
of uncertainty in the imputation process. The central
argument of this paper, more fully developed below,
is that there is uncertainty in the choice of the imput-
ation model itself and this uncertainty is not being
accounted for in conventional Bayesianly proper mul-
tiple imputation. Thus, for multiple imputation to be
fully Bayesianly proper, it is necessary to account for
imputation model uncertainty. We address imputation
model uncertainty by adding a Bayesian model
averaging component to multiple imputation.

The organization of this paper is as follows. In the
next section, we provide an overview of Bayesian
model averaging following closely the discussion in
Hoeting, Madigan, Raftery, and Volinsky (1999) and1Note: footnote ours. This paper was eventually published as Rubin (1996).
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more recently, Kaplan and Lee (2018). This is then
followed by a review of the method of chained equa-
tions that we use as our framework for multiple
imputation. Next, we introduce our approach that
combines Bayesian model averaging with multiple
imputation via chained equations which we refer to as
miBMA – Multiple Imputation under Bayesian Model
Averaging. This is followed by our simulation study
design, followed by the results. We then provide
a small case study using real data from the 2015 cycle
of the Program on International Study Assessment
(PISA) (OECD, 2016). Finally, we close the paper
with a discussion of possible extensions of our
approach to imputation under the generalized linear
model.

Overview of Bayesian model averaging

As mentioned earlier, Bayesian imputation under the
normal linear model addresses uncertainty only
through the specification of prior distributions on the
model parameters and does not account for uncer-
tainty in the choice of imputation models. To account
for parameter and model uncertainty requires the
method of Bayesian model averaging.

Bayesian model averaging has had a long history of
theoretical developments and practical applications.
Early work by Leamer (1978) laid the foundation for
Bayesian model averaging. Fundamental theoretical
work on Bayesian model averaging was conducted in
the mid-1990s by Madigan and his colleagues (e.g.,
Madigan & Raftery, 1994; Raftery, Madigan, &
Hoeting, 1997; Hoeting et al., 1999). Additional theor-
etical work was conducted by Clyde (1999). Draper
(1995) has discussed how model uncertainty can arise
even in the context of experimental designs, and Kass
and Raftery (1995) provide a review of Bayesian
model averaging and the costs of ignoring model
uncertainty. A more recent review of the general
problem of model uncertainty can be found in Clyde
and George (2004). Bayesian model averaging has
been implemented in the R software programs “BMA”
(Raftery, Hoeting, Volinsky, Painter, & Yeung, 2015)
and “BMS” (Zeugner & Feldkircher, 2015).

In addition to theoretical developments, Bayesian
model averaging has been applied to a wide variety of
content domain. A perusal of the extant literature
shows Bayesian model averaging applied to economics
(e.g., Fern�andez, Ley, & Steel, 2001), bioinformatics of
gene expression (e.g., Yeung, Bumgarner, & Raftery,
2005), weather forecasting (e.g., Sloughter, Gneiting,
& Raftery, 2013), and causal inference within the

propensity score framework (Kaplan & Chen, 2014;
Zigler & Dominici, 2014), to name just a few. A
recent extension of Bayesian model averaging to struc-
tural equation modeling can be found in Kaplan and
Lee (2015), and an overview of Bayesian model aver-
aging with applications to education policy research
can be found in Kaplan and Lee (2018).

Bayesian model averaging: Methods

Following Madigan and Raftery (1994, see also;
Kaplan & Lee, 2018), consider a quantity of interest
such as the prediction of a missing value. We will
denote this quantity as !. Next, consider a set of
competing imputation models Mk, k ¼ 1, 2, :::,K that
are not necessarily nested. The posterior distribution
of ! given data y can be written as a mixture
distribution,

pð!jyÞ ¼
XK
k¼1

pð!jMkÞpðMkjyÞ, (3)

where pðMkjyÞ is the posterior probability of model
Mk given the data y written as

pðMkjyÞ ¼ pðyjMkÞpðMkÞPK
l¼1pðyjMlÞpðMlÞ

, l 6¼ k: (4)

where the first term in the numerator on the right-
hand side of equation (4) is the probability of the data
given model k, also referred to as the integrated likeli-
hood written as

pðyjMkÞ ¼
ð
pðyjhk,MkÞpðhkjMkÞdhk, (5)

where pðhkjMkÞ is the prior distribution of the param-
eters hk under model Mk (Raftery et al., 1997). The
posterior model probabilities can be considered mix-
ing weights for the mixture distribution given in equa-
tion (3) (Clyde & Iversen, 2015). The second term
pðMkÞ on the right-hand side of equation (4) is the
prior imputation model probability for model k,
allowing each imputation model to have a different
prior probability based on past performance of that
imputation model or a belief regarding which of the
models might be the true model. The denominator of
equation (4) ensures that pðMkjyÞ integrates to 1.0.

An important feature of equation (4) is that
pðMkjyÞ captures the posterior (post-data) uncertainty
in a given imputation model and will likely vary
across models. Herein lies the problem of model selec-
tion in the context of multiple imputation; given the
choice of a particular imputation model, the analyst
effectively ignores the uncertainty in other models
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that could have been used for imputation. Of course,
equation (4) could be used as a method for model
selection, simply choosing the imputation model with
the largest posterior model probability. However, we
argue that to settle on a particular imputation model
– even one with the largest posterior model probabil-
ity among a set of competing models – still ignores
the uncertainty inherent in the model choice problem.
As such, we hypothesize that our approach to multiple
imputation based on using BMA to address imput-
ation model uncertainty will perform better than
choosing the model with the largest posterior model
probability or simply ignoring model uncertainty
altogether, as is the case with conventional Bayesian
MI. Indeed, Raftery, Madigan, and Hoeting (1997)
show that BMA provides superior predictive validity
compared to that of any single model measured by a
logarithmic scoring rule.

Parameter and model priors for BMA

In the context of BMA, we are required to specify pri-
ors on the model parameters as well as on the model
space. For model parameters, we use the default priors
in the “BMA” package – namely, the unit information
prior (Kass & Wasserman, 1995). Following Raftery
(1998, pp 3–6, see also Kaplan & Lee, 2018), the unit
information prior is a weakly informative prior that is
diffused over the region of the likelihood where par-
ameter values are considered mostly plausible, but not
overly spread out. This is accomplished by forming
the prior based on the maximum likelihood estimate
of the parameter mean, with variance equal to the
expected information from one observation.2 The
default prior on the model space is 1=M, where M is
the number of models, reflecting the belief that no
imputation model is to be favored as the true model
to be used for imputation a priori.

Computational issues

As pointed out by Hoeting et al. (1999), Bayesian
model averaging is difficult to implement. In particu-
lar, they note that the number of terms in equation
(3) can be quite large, the corresponding integrals are
hard to compute, the specification of pðMkÞ may not
be straightforward, and choosing the class of models
to average over is also challenging. To address the
problem of computing equation (5) the Laplace

method, which has been used productively for the
computation of Bayes factors (Kass & Raftery, 1995),
can be used and this will lead to a simple BIC
approximation under certain circumstances (Tierney
& Kadane, 1986; Raftery, 1996).3

To address the problem of reducing the overall
number of imputation models, we use the so-called
Occam’s window algorithm (Madigan & Raftery, 1994)
as implemented in the R program “BMA” (Raftery
et al., 2015). Following closely the discussion given in
Raftery et al. (1997), in the context of multiple imput-
ation, one might start with a very large number of
predictors; but the goal is to narrow down this large
set of predictors to a small number of predictors that
provide accurate predictions of the missing data. As
noted in the earlier quote by Hoeting et al. (1999), the
concern in drawing inferences from a single “best”
imputation model is that the choice of a single set of
predictors of the missing data ignores uncertainty in
model selection.

The algorithm proceeds in two steps (Raftery et al.,
1997). In the first step, imputation models are elimi-
nated from equation (3) if they predict the missing
data much less well than the model that provides the
best predictions based on a “caliper” value C chosen
in advance by the analyst. The caliper C sets the
“width” of Occam’s window. Formally, consider again
a set of imputation models Mk, k ¼ 1:::K. Then, the
set A0 is defined as

A0 ¼ Mk :
maxlfpðMljyÞg

pðMkjyÞ � C

� �
: (6)

Equation (6) compares the imputation model with
the largest posterior model probability,
maxlfpðMljyÞg, to a given model pðMkjyÞ. If the ratio
in equation (6) is greater than the chosen value C,
then it is discarded from the set A0 of models to be
included in the model averaging. Notice that the
set of models contained in A0 is based on Bayes
factor values.

The set A0 now contains imputation models to be
considered for model averaging. In the second,
optional step, imputation models are discarded from
A0 if they receive less support from the data than

2Note that the unit information prior is equivalent to Zellner’s g-prior
(Zellner et al. 1986), where g¼ 1/N… , and where N is the sample size.
See also Fern�andez et al. (2001).

3The Laplace method of integrals is based on a Taylor expansion of a
function f(u) of a q-dimensional vector u. The approximation isÐ
efðuÞdu ’ 2ðpÞq=2jAj1=2 exp ffðu�Þg, where u� is the value of u at which

f attains its maximum, and A is minus the inverse of the Hessian of f
evaluated at u� . Following Raftery (1996, pg. 253), when the Laplace
method is applied to equation (5), we obtain the approximation
pðyjMkÞ ’ ð2pÞqk jAkj1=2pðyj~hk ,MkÞpð~hk ,MkÞ, where qk is the dimension of
hk, ~hk is the posterior mode of hk, and Ak is minus the inverse of the
Hessian of log fpðyjhk ,MkÞpðhkjMkÞg, evaluated at the posterior mode ~hk:
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simpler sub-models. Formally, models are further
excluded from equation (3) if they belong to the set

B ¼ Mk : 9Ml 2 A0,Ml � Mk,
pðMljyÞ
pðMkjyÞ>1

� �
: (7)

Equation (7) states that there exists a model Ml

within the set A0 and where Ml is simpler than Mk. If
a complex model receives less support from the data
than a simpler sub-model – again based on the Bayes
factor – then it is included in B. Notice that the
second step corresponds to the principal of Occam’s
razor (Madigan & Raftery, 1994).

With step 1 and step 2, the computational problem
of BMA is simplified by replacing equation (3) with

pð!jy,AÞ ¼
X
Mk2A

pð!jMk, yÞpðMkjy,AÞ, (8)

where A is the relative complement of A0 and B That
is, the imputation models under consideration for
Bayesian model averaging are those that are in A0 but
not in B.

Madigan and Raftery (1994) then outline an
approach to the choice between two models to be
considered for Bayesian model averaging. To make
the approach clear, consider the case of just two mod-
els M1 and M0, where M0 is the simpler of the two
models. This could the case where M0 contains fewer
predictors than M1 in a regression analysis. In terms
of log-posterior odds, if the log-posterior odds are
positive, indicating support for M0, then we reject M1.
If the log-posterior odds are large and negative, then
we reject M0 in favor of M1. Finally, if the log-poster-
ior odds lie in between the pre-set criterion, then both
models are retained.

Multiple imputation via chained equations

Our approach for combining BMA and multiple
imputation lies within the chained equations frame-
work developed by van Buuren (2012) and imple-
mented in the R program “mice” (van Buuren &
Groothuis-Oudshoorn, 2010). The chained equations
approach works as follows: First, a target variable is
chosen among the set of variables to be imputed and
this will be the first variable that the algorithm
encounters containing missing data. The missing data
on this first target variable is replaced by a random
value from the observed data on that target variable.
The algorithm then proceeds to assign these
“placeholder” values to each variable in the set to be
imputed. After the placeholders are assigned, the
chained equations algorithm chooses the first variable
as the dependent variable and all other variables as

predictor variables and runs the chosen imputation
method – in our case Bayesian linear regression under
the normal model (Schafer, 1997).4 After imputation
of the missing data for the first variable, the algorithm
moves to the next variable in the dataset and again
runs the imputation method of choice. After the algo-
rithm cycles through all the variables, the procedure is
repeated based on a pre-set number of iterations.
Once all iterations are completed, the resulting
imputed file constitutes the first imputed data set. The
process then repeats itself until the desired number of
imputations are obtained. The algorithm can run
these sequences simultaneously m number of times
obtaining m imputed data sets. This is the algorithm
used in “mice” which we will use for our
analyses below.

Bayesian imputation under the normal
linear model

For this paper, we will follow closely the notation of
van Buuren (2012). Let Xobs represent observed pre-
dictors, Xmis represent missing predictors, yobs repre-
sent the observed outcome, and ymis represent the
missing outcome. Further, imputed values of X and y
will be represented as _X and _y. The “mice” package
uses standard non-informative priors for each param-
eter (van Buuren, 2012). As noted earlier, after esti-
mating _y, the value imputed for the missing case and
all subsequent missing cases in the data constitutes
the first iteration. Bayesian imputation under the
normal linear model using the “mice.impute.norm”
function in the program “mice” proceeds as follows:

1. Obtain the cross products matrix S ¼ X0
obsXobs.

2. Calculate V ¼ ½Sþ diagðSÞj��1, where j is a
constant ridge parameter fixed to be close to
zero. For this paper, j ¼ 0:0001.

3. Calculate b̂ ¼ VX0
obsyobs.

4. Draw a random variate _g�v2� with � ¼ n1�q,
where n1 is the number of observed rows in X
and q is the number of variables in X.

5. Calculate _r2 ¼ ðyobs�Xobsb̂Þ0ðyobs�Xobsb̂Þ= _g .
6. Draw q independent N(0, 1) variates and arrange

in the vector _z1.
7. Calculate V1=2 via a Cholesky decomposition.
8. Calculate _b ¼ b̂ þ _r _z1V1=2.

4Note that the “mice” program is flexible enough to allow different
imputation methods to be chosen for different scales of variables. We
address this issue and its implications for missing data with Bayesian
model averaging in the Discussion section.
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9. Draw n0 independent N(0, 1) variates and
arrange in the vector _z2, where n0 is the number
of missing rows in X.

10. Calculate the n0 values _y ¼ Xmis
_b þ _z2 _r.

For this paper, we refer to Bayesian multiple
imputation under the normal linear model as NORM.

FCS v. Joint modeling

Our choice for embedding BMA within the FCS
framework is primarily due to the flexibility of the
approach, and this is especially true when missing
data appear in variables with very different metrics –
e.g. missing on binary or polytomous variables. We
discuss future research on this topic in the Discussion
section, but for this paper, we consider only continu-
ous normal variables. In addition, our view is that
there is model uncertainty present for any given target
variable chosen for imputation. Thus, our view is that
our approach would capture a greater amount of
model uncertainty than that which could be captured
by employing BMA under multivariate imputation.

It is worth considering, however, the conditions
under which multiple imputation under the multivari-
ate model and under FCS provide comparable results.
In a study of the stationary distribution of iterative
imputation (i.e. FCS), Liu, Gelman, Hill, Su, and
Kropko (2014) point out that the stationary distribu-
tion resulting from the Bayesian approach to FCS will
not necessarily provide results that converge to any
multivariate distribution. Liu et al. (2014) argue that if
the families of the conditional models used in FCS are
compatible, then FCS is asymptotically equivalent to
the joint Bayesian model as long as the MCMC algo-
rithm converges to a stationary distribution for each
conditional model. Under that condition, Rubin’s
combining rules (Rubin, 1987) are valid for condi-
tional models.

As defined by Liu et al. (2014), compatibility refers
to the ability to map the parameters of the iterative
model to the parameters of the joint model. If this
mapping cannot be accomplished, then the iterative
and joint models are not compatible. However, in that
case, what is essential is that the conditional models
are valid for the target variables of imputation. In
Example 2 of Liu et al. (2014) they show that for con-
tinuous data, the parameters of the FCS models can
be mapped onto the parameters of the joint model,
and hence the distributions under FCS are compatible
to those under the joint Bayesian models. In general,
however, it is difficult to establish compatibility when

the conditional models are quite different for different
target variables (e.g., normal, logistic, multinomial,
etc.). For the present study, however, we generate data
according to a multivariate normal distribution and
then use FCS with BMA under the normal model.
Moreover, we monitor convergence of the algorithm
at each step. Thus, we argue that our addition of
BMA to FCS is compatible to what would be obtained
under a multivariate model.

Multiple imputation under Bayesian
model averaging

In this section, we outline our proposed miBMA
approach. As noted earlier, we implement our
approach using Bayesian normal linear regression
implemented in the “mice.impute.norm” function in
“mice”. It should be noted that an approach similar to
the method in this paper was proposed by Mitra and
Dunson (2010).5 In their paper, Mitra and Dunson
focused on using BMA within a stochastic search vari-
able selection (SSVS) (George & McCulloch, 1993)
algorithm to conduct variable selection with data that
are missing on the predictors. They argued that SSVS
cannot be directly implemented when there is missing
data in the predictor set, and common approaches
such as listwise deletion are not efficient and can
introduce bias. To address this issue, Mitra and
Dunson (2010) developed an extension of the SSVS
algorithm that simultaneously imputes missing data
and conducts Bayesian variable selection via BMA.
Their results using simulation and real data analyses
showed the benefits of model averaging over imput-
ation models in terms of out-of-sample predictive
performance.

Of relevance to our paper, Mitra and Dunson
(2010) did not propose BMA as a method for multiple
imputation, per se. They do, however, allude to our
approach by noting that one could impute missing
data via MCMC at each step of the SSVS algorithm,
thus accounting for uncertainty in the predictors
included in the model. Our paper differs from Mitra
and Dunson (2010) primarily in that we are focusing
on BMA as a method for creating a multiply imputed
data sets within a fully chained equations framework
prior to any data analysis and not proposing BMA as
a method for variable selection within any specific
model. Thus, as we discuss in the introduction, we are
drawing a distinction between the imputer who creates

5We thank an anonymous reviewer for bringing this paper to
our attention.
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the data set, and the analyst who is proposing a model
for a specific substantive question (see, Meng, 1994).

The chained equations approach just described
accounts for parameter uncertainty, and as discussed
earlier, is Bayesianly proper (Schafer, 1997). However,
as we argued in the introduction of the paper,
Bayesian multiple imputation approaches do not
account for uncertainty in the imputation model and
hence are not fully Bayesianly proper. Our approach,
in its essence, simply adds a Bayesian model averaging
component to each cycle of the chained equations
approach. Thus, as each variable takes its turn as the
target variable for imputation, Bayesian model averag-
ing is applied to the imputation model for that target
variable. In doing so, imputation model uncertainty
(as well as parameter uncertainty) is accounted for
across all variables and iterations.

More specifically, the miBMA algorithm can be
outlined as follows where steps 3 and 4 indicate our
miBMA addition to the NORM algorithm.

1. Obtain the cross products matrix S ¼ X0
obsXobs.

2. Calculate V ¼ ½Sþ diagðSÞj��1, where j is a
ridge parameter.

3. Specify the imputation model Pðymisjyobs,XobsÞ
and allow maximum model uncertainty by
choosing a large caliper value C for
Occam’s window.

4. Use pðbwjyobs,Xobs,AÞ ¼
P

Mk2A pðbwjMk, yobs,
XobsÞpðMkjyobs,Xobs,AÞ to calculate the averaged
weighted regression coefficients, bw, and where
A was defined earlier as the subset of retained
models from BMA.

5. Draw a random variate _g�v2� with � ¼ n1�q.
6. Calculate _r2 ¼ ðyobs�Xobsb̂wÞ0ðyobs�Xobsb̂wÞ= _g .
7. Draw q independent N(0, 1) variates and arrange

in the vector _z1.
8. Calculate V1=2 via a Cholesky decomposition.
9. Calculate _bw ¼ b̂w þ _r _z1V1=2.
10. Draw n0 independent N(0, 1) variates and

arrange in the vector _z2.
11. Calculate the n0 values _y ¼ Xmis

_bw þ _z2 _r.

Simulation study design

We investigate the impact of imputation model
uncertainty under six different design conditions: (a)
sample size – small (100), medium (1000) and large
(5000), (b) the size of the correlations between varia-
bles – low (.2) and moderately high (.6), the percent-
age of missing data – low missing (20%), medium
missing (40%) and high missing (60%), (d) missing

mechanism – MAR and MCAR, and (e) method of
imputation – miBMA and NORM. In total, 72 condi-
tions are produced. We generate 10 variables under
the assumption of multivariate normality. Missing
data are generated for 3 out of 10 variables under an
MAR mechanism. To generate missing under MAR,
we sort variable 1 from highest to lowest. Those
observations in the top, say, 20% of variable 1 are
removed from the first MAR variable (variable 4).
Similarly, variable 2 is sorted from highest to lowest
and used to generate missingness in the second MAR
variable (variable 5), and so on. Variables 7 through
10 have complete data. The process is repeated for
40% and 60% missing. We also generate missing data
on 5 out of 10 variables under MCAR mechanism on
the initial (full) data set by randomly removing data
using the function “sample” in base program of R (R
Core Team, 2017). The data are then multiply
imputed separately under miBMA and NORM.

Ten iterations and 20 imputations are completed
for each method. We use a large caliper value for
Occam’s window and let the result have up to 250
different models.6 Each condition of the design is
replicated 500 times, and thus we are exploring the
frequentist properties of our BMA approach to
multiple imputation (Little, 2006, 2011).

Simulation study evaluation: Kullback–Leibler
divergence and mean squared prediction error

To evaluate our BMA approach for multiple imput-
ation against the imputation model with largest pos-
terior model probability and against normal-theory
Bayesian multiple imputation, we use the Kullback-
Leibler divergence (K-L divergence) measure (Kullback
& Leibler, 1951; Kullback, 1959, 1987). The K-L
divergence is related to Boltzmann’s (1877) concept of
entropy in physics and Shannon’s (1948) notion of
entropy in communication theory. Following the
discussion given in Burnham and Anderson (2002),
consider two probability distributions: f, which is
assumed to be fixed, and g, which is assumed to vary
over the space of candidate models, each defined by a
parameter vector (or scalar) h. For this study, f
represents the true complete-data distribution and g
represents the distribution of the data after imput-
ation. Then, the K-L divergence between the two
distributions can be written as

Iðf , gÞ ¼
ð
f ðxÞlog f ðxÞ

gðxjhÞ
� �

dx (9)

6The default number of models in the “BMA” package is 150.
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where we interpret I(f, g) as the “information lost
when g is used to approximate f i.e., I(f, g) is the
distance from g to f (Burnham & Anderson, 2002,
p. 51).

We argue that the K-L divergence is an appropri-
ate measure for judging the quality of our miBMA
approach. Specifically, it is not expected that any
missing data imputation method provide accurate
point estimates of the missing data, but rather that
the method provides reasonable distributions of
plausible missing data values. Indeed, Equation (1)
shows that the underlying nature of multiple imput-
ation is the predictive distribution. To assess the
adequacy of predictive distributions, it is useful to
use scoring rules which provide measures of the
accuracy of probabilistic predictions (see e.g., Winkler
et al., 1996; Jose, Nau, & Winkler, 2008; Merkle &
Steyvers, 2013; Gneiting & Raftery, 2007). The K-L
divergence measure is a proper scoring rule (Dawid
& Musio, 2015) and is equivalent to a logarithmic
scoring rule (see Theorem 4.1 in Mitra & Dunson,
2010). The model with the lowest K-L divergence
measure is deemed best in the sense that the infor-
mation lost when approximating the true complete-
data distribution with the distribution based on the
particular imputation method is lowest. To calculate
K-L divergence results for both simulation and the
case study, we use the “entropy” package (Hausser &
Strimmer, 2014) in the R programing environment
(R Core Team, 2017).

In addition to evaluating the accuracy of our BMA
approach to multiple imputation using K-L diver-
gence, we also calculate mean squared prediction error
(MSPE) for this simulation study as follows.

MSPE ¼
X20
m¼1

X10
i¼1

ð
XN
n¼1

ðyn: �yobsnÞ2=NÞ=10
" #

=20 (10)

where yn_ are the predicted missing values, yobsn are the
observed values, n ¼ f1, :::,Ng represents number of
missing cases which is a factor in the study, i indexes the
number of iterations, and m indexes the number of
imputations. It is well known that MSPE is a measure of
both the bias and variance of an estimator for an
unknown quantity. The approach with the lowest MSPE
is preferred. It should be noted however, that BMA is
not optimized for MSPE, but rather is a measure of
model fit (Yao, Vehtari, Simpson, & Gelman, 2018).

All analyses for this simulation study are
conducted within the R programing environment (R
Core Team, 2017). The R code and data for this simu-
lation study is available at http://bise.wceruw.org/
index.html.

Results of simulation study

With 10 variables there are 210 possible sub-models
that the algorithm must explore. Table 1 provides the
average posterior model probabilities over 500 repli-
cations under each condition of our study. In par-
ticular, we show the posterior model probability
summed over all the sub-models. For example, for
Cor 0.2/20% missing and N¼ 100 condition, we find
average posterior model probabilities 0.581, 0.578 and
0.584 for the first, second and third variable with
missing cases (labeled MAR1, MAR2 and MAR3,
respectively in Table 1). Under MCAR, results are
very similar to MAR; 0.572, 0.574 and 0.574 for
MCAR1, MCAR3 and MCAR5 variables.7 To inter-
pret this finding, note that the posterior model prob-
abilities do not all sum to 1.0. This suggests that
there is a considerable amount of imputation model
uncertainty that is not accounted for by conventional
methods of multiple imputation. We note that as
sample increases, model uncertainty decreases.

We also notice an interaction between the sample
size conditions and the conditions of variable correla-
tions and percent missing. In particular, for the
N¼ 100 condition, the percent missing among the
predictors has a greater impact on model uncertainty
than the correlations, with somewhat larger posterior
model probabilities when the percent missing is
higher. Similar results are found for the N¼ 1000 and
N¼ 5000 case.

Table 1. Average over 500 replications of the cumulative
Posterior Model Probabilities for miBMA.

MAR MCAR

MAR1 MAR2 MAR3 MCAR1 MCAR3 MCAR5

N¼ 100 Cor 0.2 20% 0.581 0.578 0.584 0.572 0.574 0.574
40% 0.614 0.615 0.616 0.609 0.611 0.610
60% 0.639 0.638 0.640 0.637 0.638 0.637

Cor 0.6 20% 0.562 0.564 0.573 0.567 0.568 0.571
40% 0.613 0.614 0.619 0.609 0.609 0.610
60% 0.653 0.654 0.654 0.645 0.644 0.640

N¼ 1000 Cor 0.2 20% 0.719 0.725 0.720 0.706 0.701 0.699
40% 0.828 0.829 0.830 0.837 0.839 0.838
60% 0.914 0.914 0.917 0.923 0.924 0.925

Cor 0.6 20% 0.854 0.852 0.855 0.867 0.865 0.869
40% 0.888 0.887 0.888 0.899 0.891 0.897
60% 0.940 0.938 0.939 0.961 0.961 0.962

N¼ 5000 Cor 0.2 20% 0.985 0.986 0.987 0.981 0.982 0.982
40% 0.974 0.973 0.974 0.972 0.972 0.972
60% 0.985 0.985 0.984 0.994 0.993 0.994

Cor 0.6 20% 1.000 1.000 1.000 1.000 1.000 1.000
40% 1.000 1.000 1.000 0.999 0.999 0.999
60% 0.997 0.997 0.997 0.992 0.993 0.993

Note: miBMA¼Multiple imputation under Bayesian model averaging.

7In the interest of space, we only show the results for MCAR1, MCAR3,
and MCAR5. The results for MCAR2 and MCAR4 results are very similar
under all conditions.
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Tables 2 and 3 provide the main results of this
paper – namely the K-L divergence measures and
MSPE for the difference between the distributions of
the complete data and the distributions of the
imputed missing data under miBMA and NORM
across all conditions of the study. These K-L divergen-
ces and MSPE values are averaged over 500 replica-
tions. In Table 2, for sample size N¼ 100, the results
indicate a noticeable benefit of accounting for model
uncertainty using miBMA across all conditions when
missing data are MAR. We find that miBMA outper-
forms NORM in terms of recovering the original
distributions as measured by K-L divergence and
MSPE. We also find that with sample sizes N¼ 1000
and N¼ 5000, K-L divergence and MSPE values are
almost identical. We also note that for sample size
N¼ 1000 and Cor 0.2/20%-40% the MSPEs are
slightly lower for NORM. The results for MCAR fol-
lows a very similar pattern. Table 3 provides the
results for the MCAR mechanism.

Case study design and results

We apply miBMA to United States data from the
2015 cycle of PISA (OECD, 2016). Launched in 2000
by the Organization for Economic Cooperation and
Development (OECD), PISA is a triennial inter-
national survey which aims to evaluate education sys-
tems worldwide by testing the skills and knowledge of
15-year-old students. In 2015, over half a million stu-
dents, statistically representative of 28 million 15-year-
olds in 72 countries and economies, took an inter-
nationally agreed-upon two-hour test. Students were
assessed in science, mathematics, reading, collabora-
tive problem solving and financial literacy. In addition
to these so-called “cognitive outcomes”, policymakers
and researchers alike have begun to focus increasing
attention on the nonacademic contextual aspects of
schooling. Context questionnaires provide important
variables for models predicting cognitive outcomes
and these variables have become important outcomes
in their own right - often referred to as “non-

Table 2. K-L Divergence and MSPE Results under miBMA and NORM for MAR Mechanism.
K-L Divergence MSPE

Missing Method MAR 1 MAR 2 MAR 3 MAR 1 MAR 2 MAR 3

N¼ 100 Cor 0.2 20% miBMA 0.048 0.050 0.048 2.050 2.054 2.031
NORM 0.055 0.057 0.055 2.125 2.110 2.114

40% miBMA 0.078 0.083 0.082 2.102 2.116 2.091
NORM 0.087 0.094 0.088 2.335 2.348 2.316

60% miBMA 0.106 0.108 0.109 2.256 2.290 2.253
NORM 0.115 0.120 0.116 2.982 2.975 2.896

Cor 0.6 20% miBMA 0.056 0.058 0.058 1.085 1.076 1.068
NORM 0.060 0.061 0.061 1.099 1.085 1.089

40% miBMA 0.066 0.073 0.070 1.109 1.120 1.108
NORM 0.073 0.077 0.075 1.208 1.217 1.202

60% miBMA 0.080 0.084 0.085 1.203 1.215 1.196
NORM 0.091 0.096 0.095 1.535 1.556 1.510

N¼ 1000 Cor 0.2 20% miBMA 0.018 0.019 0.018 1.780 1.781 1.778
NORM 0.018 0.020 0.019 1.758 1.760 1.760

40% miBMA 0.029 0.032 0.029 1.792 1.792 1.791
NORM 0.030 0.033 0.029 1.781 1.780 1.781

60% miBMA 0.041 0.042 0.041 1.812 1.812 1.812
NORM 0.041 0.044 0.042 1.823 1.819 1.824

Cor 0.6 20% miBMA 0.030 0.028 0.030 0.916 0.914 0.916
NORM 0.030 0.029 0.030 0.907 0.907 0.907

40% miBMA 0.031 0.030 0.031 0.927 0.926 0.928
NORM 0.031 0.030 0.032 0.921 0.920 0.921

60% miBMA 0.034 0.032 0.033 0.943 0.942 0.942
NORM 0.033 0.033 0.033 0.943 0.943 0.944

N¼ 5000 Cor 0.2 20% miBMA 0.013 0.015 0.016 1.733 1.740 1.734
NORM 0.013 0.015 0.016 1.732 1.737 1.734

40% miBMA 0.020 0.022 0.024 1.744 1.746 1.743
NORM 0.020 0.022 0.024 1.742 1.743 1.742

60% miBMA 0.027 0.030 0.031 1.754 1.757 1.756
NORM 0.028 0.030 0.031 1.752 1.754 1.754

Cor 0.6 20% miBMA 0.022 0.022 0.022 0.894 0.896 0.894
NORM 0.022 0.022 0.023 0.895 0.897 0.895

40% miBMA 0.023 0.023 0.023 0.899 0.900 0.899
NORM 0.022 0.022 0.022 0.901 0.901 0.901

60% miBMA 0.023 0.022 0.023 0.905 0.907 0.906
NORM 0.023 0.023 0.023 0.907 0.907 0.908

Note: miBMA¼Multiple imputation under Bayesian model averaging; NORM¼Multiple imputation using Bayesian linear regression; K-L Test: Kullback-
Leibler divergence test; MSPE: Mean squared prediction error.
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cognitive outcomes” (Heckman & Kautz, 2012; Kuger,
Klieme, Jude, & Kaplan, 2016). PISA also assesses
these non-cognitive outcomes via a one-half hour
internationally agreed-upon context questionnaire
(OECD, 2016).

The dependent variable for this example is the first
plausible value of science achievement (PV1SCIE).8

Nine predictor variables were selected and these varia-
bles are described in Table 4. The data contain unit
missing data and the missing data patterns and Little’s
MCAR test results are given in Table 5. The depend-
ent variable does not include any missing cases
because plausible values are already imputed (von
Davier, 2013). The total size of the sample is 5712.
We find that HISEI (index of highest parental occupa-
tional status) has the highest number of missing

values (7.9%) and ESCS (Index of economic, social
and cultural status) has the lowest number (1.3%).

After determining the number of unique missing
data patterns in the data set, we multiply impute the
data using (a) miBMA and (b) NORM. Each method
has 20 imputations and 10 iterations. After imput-
ation, we apply both frequentist and Bayesian linear
regression for the analyses. We pooled the results dif-
ferently for the frequentist regression and Bayesian
regression analyses in accordance to best practices
(Zhou & Reiter, 2010). For the frequentist regression
analysis, ordinary least squares estimates of the model
parameters are obtained for each imputed data set
and the results are pooled according to Rubin’s rules
(Rubin, 1987). For Bayesian linear regression, and for
each imputation approach, we generate 2 chains of
50,000 samples after 5,000 burn-in by Gibbs sampling
implemented via the “rjags” program (Plummer, 2016)
for each imputed data set. A vague normal prior is
used for the PV1SCIE and weakly-informative priors

Table 3. K-L Divergence and MSPE Results under miBMA and NORM for MCAR Mechanism.
K-L Divergence MSPE

Missing Method MCAR1 MCAR3 MCAR5 MCAR1 MCAR3 MCAR5

N¼ 100 Cor 0.2 20% miBMA 0.044 0.044 0.042 2.003 2.013 1.956
NORM 0.048 0.048 0.049 2.005 2.019 1.986

40% miBMA 0.075 0.076 0.080 2.063 2.082 2.057
NORM 0.082 0.085 0.084 2.127 2.140 2.117

60% miBMA 0.104 0.106 0.110 2.244 2.255 2.226
NORM 0.114 0.115 0.114 2.391 2.432 2.397

Cor 0.6 20% miBMA 0.033 0.037 0.036 1.040 1.048 1.017
NORM 0.035 0.039 0.038 1.031 1.040 1.023

40% miBMA 0.063 0.065 0.064 1.079 1.089 1.075
NORM 0.068 0.069 0.067 1.102 1.109 1.098

60% miBMA 0.091 0.090 0.092 1.178 1.187 1.168
NORM 0.097 0.092 0.094 1.248 1.269 1.253

N¼ 1000 Cor 0.2 20% miBMA 0.017 0.016 0.016 1.771 1.774 1.774
NORM 0.017 0.016 0.016 1.750 1.752 1.753

40% miBMA 0.031 0.030 0.031 1.787 1.796 1.796
NORM 0.032 0.031 0.032 1.771 1.774 1.775

60% miBMA 0.044 0.042 0.042 1.815 1.822 1.821
NORM 0.045 0.043 0.044 1.797 1.802 1.803

Cor 0.6 20% miBMA 0.016 0.015 0.015 0.910 0.912 0.911
NORM 0.015 0.015 0.015 0.901 0.902 0.902

40% miBMA 0.029 0.028 0.029 0.925 0.929 0.929
NORM 0.030 0.027 0.030 0.916 0.918 0.918

60% miBMA 0.042 0.040 0.041 0.948 0.951 0.950
NORM 0.042 0.040 0.042 0.935 0.938 0.939

N¼ 5000 Cor 0.2 20% miBMA 0.011 0.010 0.011 1.741 1.735 1.737
NORM 0.011 0.011 0.012 1.738 1.734 1.736

40% miBMA 0.021 0.020 0.021 1.753 1.752 1.751
NORM 0.021 0.020 0.021 1.747 1.747 1.748

60% miBMA 0.028 0.030 0.030 1.770 1.768 1.770
NORM 0.028 0.030 0.031 1.762 1.760 1.762

Cor 0.6 20% miBMA 0.011 0.010 0.011 0.895 0.892 0.893
NORM 0.011 0.010 0.011 0.894 0.892 0.893

40% miBMA 0.020 0.019 0.020 0.905 0.904 0.904
NORM 0.020 0.019 0.021 0.904 0.904 0.904

60% miBMA 0.026 0.030 0.030 0.920 0.919 0.920
NORM 0.027 0.030 0.030 0.917 0.916 0.917

Note: miBMA¼Multiple imputation under Bayesian model averaging; NORM¼Multiple imputation using Bayesian linear regression; K-L Test: Kullback-
Leibler divergence test; MSPE: Mean squared prediction error.

8We recognize that when using plausible values in the analysis of large-
scale educational assessments, it is more appropriate to use all plausible
values and combine them using Rubin’s (1987) rules. However, extending
our miBMA approach to the plausible value framework is beyond the
scope of this paper.
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are used for the model parameters. This generates 2
million draws from the posterior distribution of the
model parameters. These draws are combined to form
the posterior distribution, for which the expected a
posterior estimate, Monte Carlo standard deviations,
and 95% posterior probability intervals are obtained.

All analyses for this case study were conducted
within the R programing environment (R Core Team,

2017). The R code and data for this case study is
available at http://bise.wceruw.org/index.html.

Table 6 shows for each variable, the largest poster-
ior model probability for each imputation. Here again,
we see the extent of uncertainty in the imputation
model. For example, for the first imputation, we find
that the posterior model probabilities across the varia-
bles range from a low of 0.480 for ESCS to a high of
1.0 for INSTSCI.

Results for the frequentist and Bayesian regression
analyses are displayed in Tables 7 and 8, respectively.
We do not observe any systematic differences between
frequentist and Bayesian results regardless of imput-
ation method, due likely to the large sample size and
non-informative priors used in Bayesian linear regres-
sion. However, we do observe sizable differences in
the results between miBMA and NORM. Given the
relative advantage of the miBMA approach with
respect to K-L divergence and MSPE found in the
simulation study, these results suggest that it is rea-
sonable to account for imputation model uncertainty
when conducting multiple imputation.

Discussion

An important issue that emerges from this work con-
cerns the expansion of our method to handling miss-
ing data among variables that are not normally
distributed or from data structures derived from clus-
tered sampling (multilevel) designs. Indeed, an
important feature of the chained equations approach,
as implemented in “mice” (van Buuren & Groothuis-
Oudshoorn, 2010) is the ability to choose different

Table 4. Variables for Case Study.
Variable Name Explanation

JOYSCIE Enjoyment of science (WLE)
INSTSCI Instrumental motivation (WLE)
SCIEEFF Science self-efficacy (WLE)
SCIEACT Index science activities (WLE)
HISEI Index of highest parental occupational status
ANXTEST Personality: Test Anxiety (WLE)
MOTIVAT Student Atttidudes, Preferences and Self-related

beliefs: Achieving motivation (WLE)
HEDRES Home educational resources (WLE)
ESCS Index of economic, social and cultural status (WLE)
PV1SCIE First plausible value of the PISA 2015

science assessment

Table 5. Number and percent of missing in each variable.
Variable Number Missing Percent Missing

JOYSCIE 203 0.036
INSTSCI 288 0.050
SCIEEFF 324 0.057
SCIEACT 300 0.053
HISEI 453 0.079
ANXTEST 119 0.021
MOTIVAT 122 0.021
HEDRES 97 0.017
ESCS 74 0.013
PV1SCIE 0 0

Note: Number of missing data patterns ¼ 67; Little’s (1988) MCAR Test:
chi-square ¼ 1062.183, df ¼ 421, p<:05.

Table 6. Model posterior probabilities for each imputation.
JOYSCIE INSTSCI SCIEEFF SCIEACT HISEI ANXTEST MOTIVAT HEDRES ESCS

Imp. PMP PMP PMP PMP PMP PMP PMP PMP PMP

1 0.809 1.000 0.561 0.668 0.533 0.653 0.675 0.806 0.480
2 0.701 1.000 0.680 0.502 0.761 0.181 0.413 0.852 0.430
3 0.739 0.944 0.335 1.000 1.000 0.341 0.424 0.710 0.556
4 0.686 1.000 0.540 0.784 0.674 0.443 0.257 0.397 0.808
5 0.610 0.860 0.609 0.931 0.588 0.416 0.407 0.391 0.696
6 0.656 1.000 0.747 0.880 0.584 0.699 0.328 0.788 0.370
7 0.416 1.000 0.681 0.598 0.952 0.378 0.273 0.491 0.820
8 0.877 1.000 0.513 1.000 1.000 0.289 0.837 0.740 0.444
9 0.404 0.870 0.818 1.000 1.000 0.673 0.602 0.454 0.503
10 0.557 0.845 0.516 0.718 1.000 0.591 0.292 0.490 0.304
11 0.844 0.852 0.714 0.905 0.669 0.325 0.373 0.700 0.759
12 0.404 1.000 0.767 0.849 0.752 0.619 0.415 0.220 0.708
13 0.526 0.868 1.000 0.869 0.938 0.517 0.429 0.321 1.000
14 0.473 1.000 0.637 0.695 0.456 0.250 0.471 0.693 0.577
15 0.444 0.936 0.649 0.589 0.800 0.712 0.352 0.791 0.617
16 0.710 1.000 0.942 1.000 0.513 0.282 0.324 0.342 0.735
17 0.847 0.887 0.737 0.821 0.839 0.533 0.812 0.269 0.487
18 0.334 1.000 0.931 0.865 0.528 0.342 0.732 0.760 0.805
19 0.655 0.947 0.790 0.792 0.525 0.333 0.238 0.536 0.613
20 0.520 1.000 0.523 0.590 0.684 0.465 0.490 0.554 0.909
Mean 0.611 0.950 0.685 0.803 0.740 0.452 0.457 0.565 0.631

Note: Imp¼ Imputation number.
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imputation methods for different variables. So, for
example, if a variable with missing data is deemed to
be normally distributed, then “mice.impute.norm” can
be chosen for that variable. On the other hand, if a
variable is dichotomous or polytomous, then the “mice”
routines “mice.impute.logreg”, or “mice.impute.polr”,
respectively, can be used. Or, in a more generic fashion,
a routine such as predictive mean matching via
“mice.impute.pmm” could be used. Finally, in the pres-
ence of multilevel data with missing data at both levels,
a routine such as “mice.impute.2lnorm” in “mice”
could be used. We believe that it would be relatively
straightforward to extend our method to dichotomous
data using the “bic.glm” function in “BMA” which pro-
vides a link function to dichotomous data (Raftery
et al., 2015). However, extending our approach to pol-
ytomous regression, predictive mean matching, or two-
level imputation requires additional research and
development.

In addition, an important assumption underlying
BMA is that the true imputation model, say, MT is
one of the models in the set of imputation models
Mk, k ¼ 1, 2, :::,K. This assumption is referred to as
the M�closed framework, discussed in Bernardo and
Smith (2000) and Clyde and Iversen (2015), and out-
lined in Kaplan and Lee (2018) in the context of
BMA applications to education research.

Following the discussion in Bernardo and Smith
(2000, pg. 385, see also Kaplan & Lee, 2018), the
M�closed framework can be contrasted with the
M�completed framework and the M�open frame-
work. In the M�closed framework, it makes sense to
assign prior probabilities that MT is in the space of
imputation models. In fact, this is the framework that
underlies the standard approach to BMA discussed in
this paper; prior probabilities are assigned to the set
of imputation models (typical the indifference prior
1=M) encoding one’s belief that each imputation
model is equally likely to be the true model. The
application of the indifference prior is the conven-
tional default used in this paper (Raftery et al., 2015).
In the M�completed and M�open frameworks MT is
not in the set of models Mk, which are simply consid-
ered proxies to be compared. As such, the assignment
of prior probabilities makes less sense and the
question comes down to how imputation models are to
be chosen and averaged if the true imputation model
does not exist within the set of possible models.

The simulated data is this paper are, by definition,
generated from a true model that we know, and there-
fore the analytic model operates in the M�closed
framework. Moreover, in the case of missing data
problems in large-scale survey operations, the notion
of “congeniality” (Meng, 1994) as discussed in the
introduction might serve as a warrant for operating in
the M�closed framework. Nevertheless, the distinction
among these modeling frameworks is quite important,
and indeed, recent work by Clyde and Iversen (2015)
have used a decision-theoretic framework that allows
BMA within the M�open framework. These issues
warrant further investigation.

Finally, we motivated our approach from the point
of view of the inputer and analyst as separate individ-
uals, where the inputer is tasked with creating a
complete dataset for secondary analyses by an analyst.
Of course, it is common for the inputer and analyst
to be one and the same person. In such a situation,

Table 7. Frequentist linear regression under two missing data approaches.
miBMA NORM

Beta SE t df p Beta SE t df p

Intercept 481.52 5.88 81.88 623.14 0.00 480.99 5.66 84.98 1406.53 0.00
JOYSCIE 24.59 1.32 18.69 2141.46 0.00 24.74 1.29 19.18 3997.79 0.00
INSTSCI �7.55 1.43 �5.28 1248.96 0.00 �7.55 1.41 �5.36 1814.68 0.00
SCIEEFF 7.75 1.08 7.18 842.93 0.00 7.76 1.05 7.42 1890.95 0.00
SCIEACT �7.80 1.16 �6.70 1546.12 0.00 �7.73 1.16 �6.64 1489.60 0.00
hisei 0.13 0.11 1.12 495.32 0.26 0.14 0.11 1.27 1247.66 0.20
ANXTEST �8.84 1.25 �7.09 1474.56 0.00 �8.77 1.22 �7.21 3117.50 0.00
MOTIVAT 3.10 1.31 2.37 3296.50 0.02 3.04 1.31 2.32 3076.46 0.02
HEDRES �0.87 1.29 �0.68 3133.75 0.50 �0.91 1.29 �0.70 2904.77 0.48
ESCS 26.43 2.66 9.92 890.29 0.00 26.21 2.60 10.06 1488.29 0.00

Table 8. Bayesian linear regression under two missing
data approaches.

miBMA NORM

Predictors Beta SD PPI low PPIhigh Beta SD PPIlow PPIhigh
Intercept 481.48 5.80 470.03 492.77 480.96 5.64 469.91 491.98
JOYSCIE 24.56 1.30 22.00 27.11 24.73 1.29 22.21 27.25
INSTSCI �7.51 1.42 �10.29 �4.71 �7.55 1.40 �10.29 �4.79
SCIEEFF 7.71 1.07 5.61 9.79 7.76 1.04 5.71 9.79
SCIEACT �7.77 1.15 �10.01 �5.51 �7.73 1.16 �10.00 �5.46
HISEI 0.13 0.11 �0.09 0.34 0.14 0.11 �0.07 0.35
ANXTES �8.84 1.24 �11.27 �6.41 �8.77 1.21 �11.15 �6.39
MOTIVAT 3.13 1.32 0.56 5.72 3.04 1.31 0.48 5.59
HEDRES �0.86 1.28 �3.37 1.65 �0.90 1.28 �3.42 1.62
ESCS 26.41 2.64 21.21 31.55 26.19 2.59 21.10 31.26

Note: S.D. ¼ Standard deviation, PPI¼ Posterior probability interval.
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we would hope that the analyst would shy away from
questionable ad hoc approaches to handling missing
data and instead implement some form of multiple
imputation. We view our approach as a valuable add-
ition to the generic notion of multiple imputation via
chained-equations but we recognize that our approach
might not be required for all situations, in particular
when there are a very small number of variables
involved in the analysis. However, our simulations do
reveal an advantage to our approach even for modest
size predictor sets.

To conclude, the purpose of this paper was to offer
a new approach to multiple imputation that accounts
for uncertainty in the imputation model via Bayesian
model averaging. We argue that by addressing
imputation model uncertainty directly within the
chained equation approach to multiple imputation,
our approach is fully Bayesianly proper in the sense of
Schafer (1997). The results of our simulation study
and case study demonstrate the extent of imputation
model uncertainty that can occur in multiple
imputation. We find that across almost all conditions
of the simulation study, our miBMA approach confers
a noticeable advantage over normal-theory based
multiple imputation in terms of reproducing the com-
plete-data distribution as measured by K-L divergence
and mean squared prediction error. Thus, in general,
we find that accounting for imputation model
uncertainty yields superior missing data imputation
performance compared to normal-theory based
multiple imputation which ignores model uncertainty.
Our simulation results and the findings from our case
study support the argument that adding BMA to
multiple imputation is a prudent approach to handling
missing data in practice.

Article information

Conflict of interest disclosures: Each author signed a
form for disclosure of potential conflicts of interest.
No authors reported any financial or other conflicts of
interest in relation to the work described.

Ethical principles: The authors affirm having followed
professional ethical guidelines in preparing this work.
These guidelines include obtaining informed consent
from human participants, maintaining ethical treat-
ment and respect for the rights of human or animal
participants, and ensuring the privacy of participants
and their data, such as ensuring that individual partic-
ipants cannot be identified in reported results or from
publicly available original or archival data.

Funding: This work was not supported.

Role of the funders/sponsors: None of the funders or
sponsors of this research had any role in the design
and conduct of the study; collection, management,
analysis, and interpretation of data; preparation,
review, or approval of the manuscript; or decision to
submit the manuscript for publication.

Acknowledgments: This paper is based, in part, on
the first author’s 2018 presidential address to the
Society for Multivariate Experimental Psychology. The
authors would like to thank Associate Editor Sarah
Depaoli and two anonymous reviewers for their com-
ments on prior versions of this manuscript.

References

Bernardo, J., & Smith, A. F. M. (2000). Bayesian Theory.
New York: Wiley.

Boltzmann, L. (1877). €Uber die Beziehung zwichen dem
Hauptsatze derzwe: Ten mechanischen W€armtheorie und
der Wahrscheinlichkeitreschung respective den S€atzen
€uber das W€armegleichgewicht. Wiener Berichte, 76,
373–435.

Burnham, K. P., & Anderson, D. R. (2002). Model selection
and multimodel inference: A practical information-theor-
etic approach (2nd ed.). New York: Springer.

Clyde, M. A. (1999). Bayesian model averaging and model
search strategies. In Bayesian statistics 6 (pp. 157–185).
Oxford: Oxford University Press.

Clyde, M. A., & George, E. I. (2004). Model uncertainty.
Statistical Science, 19, 81–94. doi:10.1214/
088342304000000035

Clyde, M. A., & Iversen, E. S. (2015). Bayesian model aver-
aging in the M-open framework. In Bayesian theory and
applications (pp. 483–498). Oxford: Oxford University
Press.

Dawid, A. P., & Musio, M. (2015). Bayesian model selection
based on proper scoring rules. Bayesian Analysis, 10(2),
479–499. doi:10.1214/15-BA942

Draper, D. (1995). Assessment and propagation of model
uncertainty (with discussion. ). Journal of the Royal
Statistical Society (Series B), 57, 55–98.

Enders, C. K. (2010). Applied missing data analysis.
New York: The Guilford Press.

Fern�andez, C., Ley, E., & Steel, M. F. J. (2001). Benchmark
priors for Bayesian model averaging. Journal of
Econometrics, 100(2), 381–427. doi:10.1016/S0304-
4076(00)00076-2

George, E. I., & McCulloch, R. E. (1993). Variable selection
via Gibbs sampling. Journal of the American Statistical
Association, 88(423), 881–889. doi:10.2307/2290777

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring
rules, prediction, and estimation. Journal of the American
Statistical Association, 102(477), 359–378. doi:10.1198/
016214506000001437

Hausser, J., & Strimmer, K. (2014). entropy: Estimation of
entropy, mutual information and related quantities
[Computer software manual]. Retrieved from https://

MULTIVARIATE BEHAVIORAL RESEARCH 13

https://doi.org/10.1214/088342304000000035
https://doi.org/10.1214/088342304000000035
https://doi.org/10.1214/15-BA942
https://doi.org/10.1016/S0304-4076(00)00076-2
https://doi.org/10.1016/S0304-4076(00)00076-2
https://doi.org/10.2307/2290777
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437
https://CRAN.R-project.org/package=entropy


CRAN.R-project.org/package=entropy (R package version
1.2.1)

Heckman, J. J., & Kautz, T. (2012). Hard evidence on soft
skills. Labour Economics, 19(4), 451–464. doi:10.1016/j.
labeco.2012.05.014

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky,
C. T. (1999). Bayesian model averaging: A tutorial.
Statistical Science, 14, 382–417. doi:10.1214/ss/
1009212814

Jose, V. R. R., Nau, R. F., & Winkler, R. L. (2008). Scoring
rules, generalized entropy, and utility maximization.
Operations Research, 56(5), 1146–1157. doi:10.1287/opre.
1070.0498

Kaplan, D., & Chen, J. (2014). Bayesian model averaging for
propensity score analysis. Multivariate Behavioral
Research, 49(6), 505–517. doi:10.1080/00273171.2014.
928492

Kaplan, D., & Lee, C. (2015). Bayesian model averaging
over directed acyclic graphs with implications for the pre-
dictive performance of structural equation models.
Structural Equation Modeling: A Multidisciplinary
Journal, 23(3), 343–353. doi:10.1080/10705511.2015.
1092088

Kaplan, D., & Lee, C. (2018). Optimizing prediction using
Bayesian model averaging: Examples using large-scale
educational assessments. Evaluation Review, 42(4), 423.
doi:10.1177/0193841X187611

Kaplan, D., & Su, D. (2018). On imputation for planned
missing data in context questionnaires using plausible
values: A comparison of three designs. Large-Scale
Assessments in Education, 6(1), 1–31. Retrieved from doi:
10.1186/s40536-018-0059-9

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of
the American Statistical Association, 90(430), 773–795.
doi:10.2307/2291091

Kass, R. E., & Wasserman, L. (1995). A reference Bayesian
test for nested hypotheses and its relationship to the
Schwarz criterion. Journal of the American Statistical
Association, 90(431), 928–934. doi:10.2307/2291327

Kuger, S., Klieme, E., Jude, N., & Kaplan, D. (2016).
Assessing contexts of learning world-wide – Extended con-
text assessment frameworks. Dordrecht: Springer.

Kullback, S. (1959). Information theory and statistics. New
York: John Wiley and Sons.

Kullback, S. (1987). The Kullback-Leibler distance. The
American Statistician, 41, 340–341.

Kullback, S., & Leibler, R. A. (1951). On information and
sufficiency. The Annals of Mathematical Statistics, 22(1),
79–86. doi:10.1214/aoms/1177729694

Leamer, E. E. (1978). Specification searches: Ad hoc inference
with nonexperimental data. New York: Wiley.

Little, R. J. A. (1988). A test of missing completely at ran-
dom for multivariate data with missing values. Journal of
the American Statistical Association, 83(404), 1198–1202.
doi:10.1080/01621459.1988.10478722

Little, R. J. A. (2006). Calibrated Bayes: A Bayes/frequentist
roadmap. The American Statistician, 60(3), 213–223. doi:
10.1198/000313006X117837

Little, R. J. A. (2011). Calibrated Bayes, for statistics in gen-
eral, and missing data in particular. Statistical Science,
26(2), 162–174. doi:10.1214/10-STS318

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with
missing data (2nd ed.). New York: John Wiley & Sons.

Liu, J., Gelman, A., Hill, J., Su, Y.-S., & Kropko, J. (2014).
On the stationary distribution of iterative imputations.
Biometrika, 101(1), 155–173. doi:10.1093/biomet/ast044

Madigan, D., & Raftery, A. E. (1994). Model selection and
accounting for model uncertainly in graphical models
using Occam’s window. Journal of the American
Statistical Association, 89(428), 1535–1546. doi:10.2307/
2291017

Meng, X.-L. (1994). Multiple-imputation inferences with
uncongenial sources of input. Statistical Science, 9(4),
538–558 doi:10.1214/ss/1177010269

Merkle, E. C., & Steyvers, M. (2013). Choosing a strictly
proper scoring rule. Decision Analysis, 10(4), 292–304.
doi:10.1287/deca.2013.0280

Mitra, R., & Dunson, D. (2010). Two-level stochastic search
variable selection in GLMS with missing predictors. The
International Journal of Biometrics, 6, 1–41. Retrieved
from doi:10.2202/1557-4679.1173

Murray, J. S. (2018). Multiple imputation: A review of prac-
tical and theoretical findings. Statistical Science, 33(2),
142. doi:10.1214/18-STS644

OECD. (2016). PISA 2015 Results (Volume I). Retrieved
from https://www.oecd-ilibrary.org/content/publication/
9789264266490-en

Plummer, M. (2016). RJAGS: Bayesian graphical models
using MCMC [Computer software manual]. Retrieved
from https://CRAN.R-project.org/package=rjags (R pack-
age version 4-6)

R Core Team. (2017). R: A language and environment for
statistical computing [Computer software manual].
Vienna, Austria. Retrieved from https://www.R-project.org/

Raftery, A. E. (1996). Approximate Bayes factors and
accounting for model uncertainty in generalized linear
models. Biometrika, 83(2), 251–266. doi:10.1093/biomet/
83.2.251

Raftery, A. E. (1998). Bayes factors and the BIC: Comment
on Weakliem (Tech. Rep. No. 347). Seattle, WA:
University of Washington, Department of Statistics.

Raftery, A. E., Hoeting, J., Volinsky, C., Painter, I., &
Yeung, K. Y. (2015, June 22). Bayesian Model Averaging
(BMA), Version 3.12. http://www2.research.att.com/volin-
sky/bma.html.

Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997).
Bayesian model averaging for linear regression models.
Journal of the American Statistical Association, 92(437),
179–191. doi:10.2307/2291462

Rubin, D. B. (1987). Multiple imputation in nonresponse
surveys. Hoboken, NJ: Wiley.

Rubin, D. B. (1996). Multiple imputation after 18þ years.
Journal of the American Statistical Association, 91(434),
473–489. doi:10.1080/01621459.1996.10476908

Schafer, J. L. (1997). Analysis of incomplete multivariate
data. New York: Chapman & Hall/CRC.

Shannon, C. E. (1948). A mathematical theory of communi-
cation. Bell System Technical Journal, 27(3), 379–423. doi:
10.1002/j.1538-7305.1948.tb01338.x

Sloughter, J. M., Gneiting, T., & Raftery, A. E. (2013).
Probabilistic wind vector forecasting using ensembles and
Bayesian model averaging. Monthly Weather Review, 141,
2107–2119. doi:10.1175/MWR-D-12-00002.1

14 D. KAPLAN AND S. YAVUZ

https://CRAN.R-project.org/package=entropy
https://doi.org/10.1016/j.labeco.2012.05.014
https://doi.org/10.1016/j.labeco.2012.05.014
https://doi.org/10.1214/ss/1009212814
https://doi.org/10.1214/ss/1009212814
https://doi.org/10.1287/opre.1070.0498
https://doi.org/10.1287/opre.1070.0498
https://doi.org/10.1080/00273171.2014.928492
https://doi.org/10.1080/00273171.2014.928492
https://doi.org/10.1080/10705511.2015.1092088
https://doi.org/10.1080/10705511.2015.1092088
https://doi.org/10.1177/0193841X187611
https://doi.org/10.1186/s40536-018-0059-9
https://doi.org/10.2307/2291091
https://doi.org/10.2307/2291327
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1080/01621459.1988.10478722
https://doi.org/10.1198/000313006X117837
https://doi.org/10.1214/10-STS318
https://doi.org/10.1093/biomet/ast044
https://doi.org/10.2307/2291017
https://doi.org/10.2307/2291017
https://doi.org/10.1214/ss/1177010269
https://doi.org/10.1287/deca.2013.0280
https://doi.org/10.2202/1557-4679.1173
https://doi.org/10.1214/18-STS644
https://www.oecd-ilibrary.org/content/publication/9789264266490-en
https://www.oecd-ilibrary.org/content/publication/9789264266490-en
https://CRAN.R-project.org/package=rjags
https://www.R-project.org/
https://doi.org/10.1093/biomet/83.2.251
https://doi.org/10.1093/biomet/83.2.251
http://www2.research.att.com/volinsky/bma.html
http://www2.research.att.com/volinsky/bma.html
https://doi.org/10.2307/2291462
https://doi.org/10.1080/01621459.1996.10476908
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1175/MWR-D-12-00002.1


Tierney, L., & Kadane, J. B. (1986). Accurate approxima-
tions for posterior moments and marginal densities.
Journal of the American Statistical Association, 81(393),
82–86. doi:10.2307/2287970

van Buuren, S., & Groothuis-Oudshoorn, K. (2010,
January). Multivariate Imputation by Chained Equations,
Version 2.3. http://www.multiple-imputation.com/.

van Buuren, S. (2012). Flexible imputation of missing data.
New York: Chapman & Hall.

von Davier, M. (2013). Imputing proficiency data under
planned missingness in population models. In L.
Rutkowski, M. von Davier, & D. Rutkowski (Eds.),
Handbook of international large-scale assessment:
Background, technical issues, and methods of data ana-
lysis. Boca Raton, IL: Chapman Hall/CRC.

Winkler, R. L., Mu~noz, J., Cervera, J. L., Bernardo, J. M.,
Blattenberger, G., Kadane, J. B., … R�ıos-Insua, D.
(1996). Scoring rules and the evaluation of probabilities.
Test, 5(1), 1–60. doi:10.1007/BF02562681

Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. (2018).
Using stacking to average Bayesian predictive distribu-
tions (with discussion). Bayesian Analysis, 13, 917–1007.

Yeung, K. Y., Bumgarner, R. E., & Raftery, A. E. (2005).
Bayesian model averaging: Development of an improved
multi-class, gene selection, and classification tool for
microarray data. Bioinformatics, 21(10), 2394–2402. doi:
10.1093/bioinformatics/bti319

Zellner, A., (1986). On assessing prior distributions and
Bayesian regression analysis with g prior distributions. In
P. Goel, & A. Zellner (Eds.), Bayesian inference and deci-
sion techniques: Essays in honor of Bruno de Finetti.
Studies in Bayesian Econometrics (pp. 233–243). New
York: Elsevier.

Zeugner, S., & Feldkircher, M. (2015). Bayesian model
averaging employing fixed and flexible priors: The BMS
package for R. Journal of Statistical Software, 68(4), 1–37.
doi:10.18637/jss.v068.i04

Zhou, X., & Reiter, J. P. (2010). A note on Bayesian infer-
ence after multiple imputation. The American Statistician,
64(2), 159–163. doi:10.1198/tast.2010.09109

Zigler, C. M., & Dominici, F. (2014). Uncertainty in
propensity score estimation: Bayesian methods for vari-
able selection and model-averaged causal effects. Journal
of the American Statistical Association, 109(505), 95–107.
doi:10.1080/01621459.2013.869498

MULTIVARIATE BEHAVIORAL RESEARCH 15

https://doi.org/10.2307/2287970
http://www.multiple-imputation.com/
https://doi.org/10.1007/BF02562681
https://doi.org/10.1093/bioinformatics/bti319
https://doi.org/10.18637/jss.v068.i04
https://doi.org/10.1198/tast.2010.09109
https://doi.org/10.1080/01621459.2013.869498

	Abstract
	Introduction
	Proper versus Bayesianly proper imputations

	Overview of Bayesian model averaging
	Bayesian model averaging: Methods
	Parameter and model priors for BMA
	Computational issues

	Multiple imputation via chained equations
	Bayesian imputation under the normal linear model
	FCS v. Joint modeling

	Multiple imputation under Bayesian model averaging
	Simulation study design
	Simulation study evaluation: Kullback–Leibler divergence and mean squared prediction error

	Results of simulation study
	Case study design and results
	Discussion
	Article information
	References


