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Considering that causal mechanisms unfold over time, it is important to investigate the mecha-
nisms over time, taking into account the time-varying features of treatments and mediators. However,
identification of the average causal mediation effect in the presence of time-varying treatments and medi-
ators is often complicated by time-varying confounding. This article aims to provide a novel approach to
uncovering causal mechanisms in time-varying treatments and mediators in the presence of time-varying
confounding.queryPlease check and confirm edit made in the article title. We provide different strategies
for identification and sensitivity analysis under homogeneous and heterogeneous effects. Homogeneous
effects are those in which each individual experiences the same effect, and heterogeneous effects are those
in which the effects vary over individuals. Most importantly, we provide an alternative definition of average
causal mediation effects that evaluates a partial mediation effect; the effect that is mediated by paths other
than through an intermediate confounding variable. We argue that this alternative definition allows us to
better assess at least a part of the mediated effect and provides meaningful and unique interpretations.
A case study using ECLS-K data that evaluates kindergarten retention policy is offered to illustrate our
proposed approach.

Key words: causal mediation analysis, time-varying treatment and mediator, time-varying confounding
variable, homogeneous effects, heterogeneous effects, sensitivity analysis.

1. Introduction

Retention is a school policy that requires students to repeat a grade if they fail tomake adequate
progress. Recent studies using same-age comparisons have found negative effects of kindergarten
retention on student math achievement among those students who are at risk for grade retention
(Hong & Raudenbush, 2005, 2006; Vandecandelaere, Vansteelandt, De Fraine, & Van Damme,
2016). Vandecandelaere et al. (2016) demonstrated that this negative effect persists throughout
primary education, although the effect attenuates over time. As a next step, it is important to
investigate why kindergarten retention has a negative effect and how this adverse effect attenuates
over time.

In this article we discuss a novel approach to causal mediation analysis with two time-varying
treatments and mediators, in which we investigate causal mechanisms underlying the relationship
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Figure 1.
The causal structural model used in the case study. Note Retention at K: Retention status at Kindergarten, Classmates:
Classmates’ math score, Year n: nth year of the study, and Math: math score.

between the kindergarten retention policy and student math achievement. Figure 1 is a graphical
representation of the model. The time-varying treatments are the retention status at kindergarten
and year 3, and the time-varying mediators are classmate math ability measured at year 2 and
year 4. The outcome of interest is student math achievement measured at the end of year 4.
We hypothesize that grouping retained students with classmates who are one year younger may
provide fewer chances to interact with themore advanced, promoted peers of the same age, thereby
slowing down the retained students’ learning. We specifically focus on the emerging mediation
effect via classmatemath ability one year after kindergarten retention to determine how the adverse
effect of kindergarten retention attenuates over time.

The substantive causal questions examined in this article are

1. Does classmate math ability mediate the negative effect of kindergarten retention on
math achievement during the first year after kindergarten retention?

2. Are there significant emerging mediation effects via classmate math ability one year
after kindergarten retention?

3. Do the emergingmediation effects differ by retention status and/or by intermediate math
score?

The first question can be answered by conducting a single-time-period causal mediation anal-
ysis. The second and third causal questions, which involve more than a single time period, have
three methodological challenges to answer. First, in order to investigate causal mechanisms with
two time-varying treatments and mediators, it is important to account for time-varying confound-
ing variables in addition to pre-treatment covariates. For example, the math score measured at
the end of year 2 may be an important intermediate confounding variable. The issue is that this
intermediate math score is a posttreatment variable, which is affected by kindergarten retention
status (treatment), and also confounds the relationship between future classmate math ability
(mediator) and final math score (outcome). In the presence of a posttreatment confounding vari-
able, the average causal mediation effect (ACME) and the average natural direct effect (ANDE)
are not identified nonparametrically unless one assumes the absence of interaction effects in the
mediator–mediator or treatment–mediator relationships with respect to the outcome (see, e.g.,
Avin, Shpitser, & Pearl, 2005; VanderWeele & Vansteelandt, 2014; Imai & Yamamoto, 2013).
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Here, the ACME is the average effect of kindergarten retention on math achievement mediated by
classmatemath ability, and theANDE is the average direct effect of kindergarten retention onmath
achievement, which is not mediated by classmate math ability. The inability to nonparametrically
identify the ACME and ANDE prevents investigation of causal mechanisms in longitudinal stud-
ies unless one is willing to make strong linearity and no-interaction effect assumptions. Under
these modeling assumptions, the mediation effect would be identified and estimable using the
product of coefficients approach as in the SEM framework (De Stavola, Daniel, Ploubidis, &
Micali, 2014).

Second, the validity of results also depends on whether the ACME and ANDE are homoge-
neous or heterogeneous (see, e.g., Imai & Yamamoto 2013; VanderWeele & Vansteelandt, 2014)
for heterogeneous effects; and Daniel, De Stavola, Cousens, and Vansteelandt (2015) for homo-
geneous effects). Homogeneous effects refer to a situation where every subject has the same
constant effect, whereas heterogeneous effects allow for systematic or random variations of the
effects. If effect homogeneity does not hold, we need to use a different strategy to identify ACME
and ANDE. Therefore in order to estimate consistent and meaningful mediation effects from
real data, it is crucial to understand differences in causal estimands (effects of interest) and the
respective assumptions that are required to identify the causal estimands under homogeneous and
heterogeneous effects.

Third, the effect homogeneity assumption is unrealistic in many cases; it is therefore essen-
tial to appropriately account for heterogeneous effects. Imai and Yamamoto (2013) developed a
sensitivity analysis in the context of multiple mediators that can be used under heterogeneous
effects. The sensitivity analysis is designed to check the robustness of findings to potential vio-
lations of the no-interaction effect (in the treatment and mediator relationship) assumption under
heterogeneous effects. However, generalizing their sensitivity analysis does not yield much infor-
mation with respect to ACME and ANDE when time-varying confounding variables are present.
This is because the corresponding sensitivity analysis depends on too many unknown sensitivity
parameters (due to the added complexities of time-varying confounding variables).

The goal of this article is, therefore, to provide a comprehensive approach for investigat-
ing causal mechanisms with time-varying treatments and mediators that allow for time-varying
confounding variables under both the homogeneous and heterogeneous effects assumption. Impor-
tantly, we suggest alternative definitions of ACME and ANDE that require fewer assumptions
than the original definitions of ACME and ANDE. These alternative definitions provide insights
regarding how the adverse effect of kindergarten retention attenuates over time, by fixing the effect
via the intermediate math score. Our alternative definitions of ACME and ANDE also enable us
to examine whether and how mediation effects vary with the level of the intermediate math
score. Given the complex nature of causal mediation analysis with time-varying treatments and
mediators, we provide practical suggestions for drawing meaningful conclusions from mediation
analyses with real-life data.

The remainder of this article is organized as follows. We begin by providing a brief intro-
duction to the data and our example. This is followed by introducing notation and definitions.
Sections 4 and 5 provide a partial identification strategy and corresponding analyses of sensitivity
to the alternative definitions of ACME and ANDE under homogeneous effects and heterogeneous
effects, respectively. Then, we present a case study in which our proposed method is applied to
the kindergarten retention study. The article concludes with a discussion.

2. Data

The Early Childhood Longitudinal Study, Kindergarten (ECLS-K) data provide representa-
tive information about a cohort of American children who attended kindergarten in 1998–1999
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Table 1.
Structure of ECLS-K data.

Years 1 2 3 4

Never retained K G1 G2 G3
Retained at K K K G1 G2
Variables Retention Classmate math ability(M1), Retention Classmate math ability(M2),

at K(T1) Math score(L) at year 3(T2) Math score(Y )
Time periods 1st 1st 2nd 2nd

(1) K = kindergarten; G1–G3 = grade 1 through grade 3.
(2) Descriptions for variables (T1, M1, L , T2, M2, and Y ) are given in Sect. 3.

(Tourangeau, Nord, Lê, Sorongon, &Najarian, 2009). The cohort was followed from kindergarten
to the 8th grade. For ease of explanation, the 1998–1999 to 2001–2002 school years are referred
to as year 1 to year 4. Table 1 shows the structure of the data. For example, if a student has never
been retained at the end of year 1, s/he will be promoted to the first, second, and third grades in
years 2, 3, and 4, respectively; and if a student has retained at the end of year 1, s/he will repeat
kindergarten at year 2 and be promoted to the first, and second grades in years 3 and 4, respectively.
Our sample includes 342 kindergarten retainees and 11,248 students who were promoted.

As shown inFig. 1, retention statusesmeasured at the endof year 1 andyear 3 serve as our time-
varying treatments. The level of classmate math ability serves as our time-varying mediator and
is measured by aggregating the math scores at the class level in years 2 and 4, except him/herself.
Our final outcome is student math achievement measured at the end of year 4. Student math scores
are calibrated by item response theory (IRT) and are vertically equated over time, which enables
us to compare outcomes between those who are retained and promoted. Note that we compare
students’ vertically equated scores. The consequences of using vertically equated scores that are
invalid with respect to underlying student ability are discussed in Steiner, Park, and Kim (2016).

Pre-treatment covariates include individual demographic characteristics; previous learning
experiences, cognitive, emotional, and social development at the student level; teacher years of
experience; and teacher educational degree at the class level. At the school level, we include the
proportion of minorities, teacher salary, public/private school, number of students in kindergarten,
number of students retained, and percentage of students retained at school. We consider student
math scores measured before kindergarten and year 2 as the time-varying confounding variable.
Particularly, studentmath achievementmeasured at year 2 is the intermediate confounding variable
that is affected by the kindergarten retention status and has an impact on future classmate ability
and math score measurements.

Our data have a hierarchical structure where students are nested within classes and schools.
Although it is important to consider the hierarchical structure in estimating the mediation effects,
it is very challenging with longitudinal data because class and school memberships changes over
time. The intraclass correlation computed from our final outcome, student math achievement
measured at the end of year 4, is 0.29, which indicates that the standard errors of estimates might
be underestimated due to this hierarchical structure of the data.

3. Notation and Definitions

To begin, let T1i ∈ {0, 1} and T2i ∈ {0, 1} be the first- and second-time measured retention
statuses for individual i , where T = 1 if retained and T = 0 if promoted. Let M1i and M2i be the
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Table 2.
Key potential outcomes and a short version of the outcomes.

Potential outcomes Interpretations Short version

M1i (t) A potential value of M1 that M1i (t)
would have been observed under T1i = t

M2i (t, 0, M1i (t)) A potential value of M2 that would have M2i (t, 0)
been observed under T1i = t and T2i = 0

Yi (t, 0, M1i (t
′), M2i (t

′′, 0)) A potential outcome under T1i = t , T2i = 0, Yi (t, 0)
and the potential values of the first and second if t = t ′ = t ′′
mediators under T1i = t ′ and T1i = t ′′, respectively.

M2i (t, 0, M1i (t), l) A potential value of M2 that would have M2i (t, 0, l)
been observed under T1i = t, T2i = 0 and Li = l.

Yi (t, 0, M1i (t
′), M2i (t

′′, 0, l), l) A potential outcome under T1i = t , T2i = 0, Li = l, Yi (t, 0, l)
and the potential values of the first and second if t = t ′ = t ′′
mediators under T1i = t ′ and T1i = t ′′, respectively

time-varying mediators measured at the first and second time periods, respectively. Let Yi be the
final math achievement score for individual i . Let Vi be a set of pre-treatment covariates, and let
Li be an intermediate math score. In general, a time-varying variable (treatment T , mediator M ,
or covariate L) may represent either a single variable that is measured at multiple time points, or
different variables at different time points. For instance, T1 and T2 can be the dosage (on/off) of
a single treatment at the two time points or they may represent two entirely different treatments:
treatment A is given at time 1, and treatment B is given at time 2 (analogously for the mediators
and covariates). Under the potential outcomes framework of Rubin (1974),1 we can write the
potential mediators as {M1i (t), M2i (t, t ′, M1i (t))} ∈ μ, where μ represents the two-dimensional
support region of potential mediators; and Yi (t, 0, M1i (t ′), M2i (t ′′, 0)) ∈ ω, where ω represents
the support of the potential outcome of Y and t, t ′ and t ′′ ∈ {0, 1}. Table 2 presents key potential
outcomes that are used throughout.

In this notation, we first discuss the originally defined ACME and ANDE with two time-
varying treatments and mediators and then introduce our alternative definitions of ACME and
ANDE. There are several ways to decompose the total effect of kindergarten retention, but we
focus on the following definitions of ACME and ANDE that are relevant to our causal questions.

3.1. Definitions of ACME and ANDE

The ACMEs via M1 and via M2 under t (δM1(t), δM2(t)) and the ANDE under t ′ (ζ(t ′)) are
respectively defined as

δM1(t) = E[Yi (t, 0, M1i (1), M2i (t, 0)) − Yi (t, 0, M1i (0), M2i (t, 0)],
δM2(t) = E[Yi (t, 0, M1i (t

′), M2i (1, 0)) − Yi (t, 0, M1i (t
′), M2i (0, 0)], and

ζ(t ′) = E[Yi (1, 0, M1i (t
′), M2i (t

′, 0)) − Yi (0, 0, M1i (t
′), M2i (t

′, 0))] (1)

1Following Rubin (1974) each individual is assumed to have only one potential treatment and one potential control
outcome, instead of an entire distribution as in Steyer’s Theory of Causal Effects or in Neyman’s setup. For detailed
information, refer to Mayer, Thoemmes, Rose, Steyer, and West (2014) and Steyer, Mayer, and Fiege (2014).
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Figure 2.
Causal structural model highlighting the ACME. a ACME via M1. b ACME via M2

for t ∈ {0, 1} and t ′ = 1 − t .2 The path-specific effects of δM1 and δM2 are highlighted in
Fig. 2. The ACME via M1 (δM1(t)) is the effect of kindergarten retention on student math score
transmitted along classmate math ability in year 2. The ACME via M2 (δM2(t)) is the effect of
kindergarten retention on student math score transmitted along classmate math ability in year 4,
either directly or mediated by classmate math ability in year 2. Lastly, the ANDE ζ(t ′) states the
direct effect of kindergarten retention on student math score through neither of the mediators.

The ACMEs via M1 and via M2 and ANDE are combined into the average kindergarten
retention effect (τ ), which is defined as the expected change in student math achievement in
response to a change from not retained to retained at kindergarten if everyone was not retained at
year 3. In formal expression, τ = E[Yi (1, 0) − Yi (0, 0)], which is the combined effects3 of the
δM1(t), δM2(t), and ζ(t ′).

These path-specific effects shown in Eq. (1) have been defined and discussed in the multiple
mediators context (see, e.g.,Daniel et al. 2015; Imai&Yamamoto, 2013; Steen, Loeys,Moerkerke,
& Vansteelandt, 2017; VanderWeele & Vansteelandt, 2014); yet, there has been little discussion
on these path-specific effects in the context of time-varying treatments and mediators. Identifying

2Following an inductive rule by Shpitser (2013), the definition can be rewritten as,

δM1 (t) = E[Yi (t, 0, M1i (1), Li (t, M1i (1)), M2i (t, 0, M1i (t), Li (t, M1i (t))))

− Yi (t, 0, M1i (0), Li (t, M1i (0)), M2i (t, 0, M1i (t), Li (t, M1i (t)))],
δM2 (t) = E[Yi (t, 0, M1i (t

′), Li (t, M1i (t
′)), M2i (1, 0, M1i (1), Li (1, M1i (1))))

− Yi (t, 0, M1i (t
′), Li (t, M1i (t

′)), M2i (0, 0, M1i (0), Li (0, M1i (0)))], and
ζ(t ′) = E[Yi (1, 0, M1i (t

′), Li (1, M1i (t
′)), M2i (t

′, 0, M1i (t
′), Li (t ′, M1i (t

′))))
− Yi (0, 0, M1i (t

′), Li (0, M1i (t
′)), M2i (t

′, 0, M1i (t
′), Li (t ′, M1i (t

′))))]

(14)

for t ∈ {0, 1} and t ′ = 1 − t .
3Suppose that t = 1; then, we have

τ = δM1 (1, 1) + δM2 (1, 0) + ζ(0)

= E[Yi (1, 0, M1i (1), M2i (1, 0)) − Yi (1, 0, M1i (0), M2i (1, 0)]
+ E[Yi (1, 0, M1i (0), M2i (1, 0)) − Yi (1, 0, M1i (0), M2i (0, 0)]
+ E[Yi (1, 0, M1i (0), M2i (0, 0) − Yi (0, 0, M1i (0), M2i (0, 0))]

= E[Yi (1, 0, M1i (1), M2i (1, 0)) − Yi (0, 0, M1i (0), M2i (0, 0))]
= E[Yi (1, 0) − Yi (0, 0]

(15)

This is the same when t = 0.



SOOJIN PARK ET AL.

Figure 3.
Causal structural model highlighting the ACME-l. Note T1: first treatment measurement, T2: second treatment measure-
ment, M1: first mediator measurement, M2: second mediator measurement, Y : outcome, V : pre-treatment covariates, and
L: time-varying confounding variable. a ACME-l via M1. b ACME-l via M2

these path-specific effects in multiple mediators context shares some similar challenges such
as a time-varying confounding or treatment-induced mediator and outcome confounding issue,
which gives many implications to studies on time-varying treatments and mediators. Despite
the similarity, a time-varying treatments and mediators case is often more complicated because
of additional treatment variables and multiple time periods. Therefore, we propose alternative
definitions that require less assumptions to be identified than these path-specific effects shown in
Eq. (1).

3.2. Alternative Definitions of ACME and ANDE

We propose alternative definitions of the ACME and ANDE in which the intermediate math
score is fixed to a specific value Li = l (ACME-l and ANDE-l) as below.

δM1(t, l) = E[Yi (t, 0, M1i (1), M2i (t, 0, l), l) − Yi (t, 0, M1i (0), M2i (t, 0, l), l)],
δM2(t, l) = E[Yi (t, 0, M1i (t

′), M2i (1, 0, l), l) − Yi (t, 0, M1i (t
′), M2i (0, 0, l), l], and

ζ(t ′, l) = E[Yi (1, 0, M1i (t
′), M2i (t

′, 0, l), l) − Yi (0, 0, M1i (t
′), M2i (t

′, 0, l), l)] (2)

for t, t ′ ∈ {0, 1}. The path-specific effects of δM1(t, l), and δM2(t, l) are highlighted in Fig. 3. The
alternative definition of the ACME via M1 (δM1(t, l)) is the effect of kindergarten retention on
student math score transmitted by classmate math ability in year 2, after fixing the intermediate
math score to Li = l. The ACME-l via M2 and ANDE-l are interpreted in the same manner as
the counterparts shown in Sect. 3.1 while fixing the intermediate math score to Li = l. These
alternative definitions can be used both when L is continuous or categorical. With continuous L as
in our example, we can fix L to a quantile, depending on researcher’s judgment. With categorical
L , we can fix L to each category.

Holding L fixed should be interpreted as hypothetical intervention, not as conditioning or
adjusting on the variable (Pearl, 2009). This implies that the values of L are no longer determined
by its parent variables (previouslymeasured variables that affect L), and thus, nomediating effects
are transmitted via L (see Fig. 3). As a result, the mediation effects defined in Eqs. (1) and (2)
actually differ in terms of variables through which the effects are transmitted. For example, the
ACME via M2 (δM2(t)) includes the mediation effect of T1 → L → M2 → Y and T1 → M1 →
L → M2 → Y , whereas the ACME-l via M2 (δM2(t, l)) does not include these paths because,
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after fixing L , its parent variables T1 and M1 no longer affect L (the corresponding arrows are
gone).

The combined effect of ACME-l and ANDE-l can be interpreted as a controlled direct effect
if T1, L , and Y represent treatment, mediator, and outcome variables, respectively. A controlled
direct effect represents howmuchmath scores at year 4 would change if math scores at year 2 were
fixed at level Li = l in the entire population, but the kindergarten retention status was changed
from not retained to retained. In formal expression, τ(l) = E[Yi (1, 0, l) − Yi (0, 0, l)]. This
controlled direct effect for a fixed L = l is further decomposed into the ACME-l and ANDE-
l. The usefulness of this controlled direct effect becomes evident with the following example.
Suppose that grouping with younger kids has a side effect of lowering self-esteem of retainees,
and hence, intermediate confounding variables include self-esteem. The interest now is focused
on whether kindergarten retention has an effect on the final math score, regardless of the indirect
effects of kindergarten retention might have on the final math score by way of deteriorating
self-esteem. It is because this controlled direct effect represents a stable kindergarten retention
effect that is invariant to personal and social factors (such as gender, socioeconomic status, parent
support, etc.) that may affect self-esteem.

Likewise, the controlled direct effect (and subsequently, the ACME-l and ANDE-l) with our
example, inwhich the intermediate confounding variable is themath score, allows us to learn about
the mediating process by removing the effect transmitted through the intermediate math score.
The alternative mediation effect (ACME-l) is now focused on whether kindergarten retention has
an effect on the final math score via interacting with classmates, regardless of what indirect effects
kindergarten retention might have via the intermediate math score. This removed indirect effect is
the average kindergarten retention effect (T1) on the intermediate math score (L) either directly or
mediated by classmate math ability (M1), which can be obtained from a single-time-period causal
mediation analysis, being prolonged to the next time period (e.g., T1 → M1 → L → Y for δM1

and T1 → L → M2 → Y for δM2 ). Hence, the alternative mediation effect can be regarded as
the mediation effect that has emerged one year after kindergarten retention, considering that this
alternativemediation effect was never captured in the single-time-period analysis (either bymeans
of computing average direct effects or average mediation effects). This alternative definition is
particularly informative in our case by identifying the effects that have emerged one year after
kindergarten retention.

4. Identification and Sensitivity Analysis Under Homogeneous Effects

This section presents identification results for the alternative definitions of ACME andANDE
and provides a sensitivity analysis when effects across individuals are assumed to be constant. As
previously discussed, the existence of intermediate confounding variables prevents identification
of the ACME and ANDE. A simple solution would be to assume the absence of intermediate con-
founding, but this assumption is frequently unrealistic in practice. Therefore, recent studies on a
time-varying treatments and mediators model attempted to solve this intermediate confounding
issue. For example, VanderWeele and Tchetgen Tchetgen (2016) proposed the use of random-
ized interventional analogues of natural direct and indirect effects that are identified even when
intermediate confounding is present (see “Appendix A” for more discussion on the randomized
interventional analogues). Another approach, which was proposed by Bind, Vanderweele, Coull,
and Schwartz (2016), is to identify the ACME with exogenous treatments using generalized
mixed-effects models. The model proposed by Bind and her colleagues requires the absence of
treatment–mediator confounding; this absence can be achieved by using exogenous treatments or
sequential randomization of treatments. Their proposed approach would not be applicable in our
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example, where the assumption is not met. Therefore, we focus only on ACME-l and ANDE-l
instead of ACME and ANDE, respectively.

For the identification of ACME-l and ANDE-l shown in Fig. 3, we apply the approach
suggested by Daniel et al. (2015), which introduces a set of sensitivity parameters under homo-
geneous effects to facilitate identification. First, the following sequential ignorability assumption
is required to identify ACME-l and ANDE-l, up to a sensitivity parameter.

A1. {M1i (t), M2i (t, 0,m1, l),Yi (t, 0,m1,m2, l)} ⊥ T1i |Vi = v,

A2. {M2i (t, 0,m1, l),Yi (t, 0,m1,m2, l)} ⊥ T2i |T1i = t, Mi1 = m1, Vi = v, Li = l,

A3. {M2i (t, 0,m1, l),Yi (t, 0,m1,m2, l)} ⊥ M1i |T1i = t, Vi = v, and

Yi (t, 0,m1,m2, l) ⊥ M2i |T1i = t, T2i = 0, M1i = m1, Vi = v, Li = l,

(3)

for any value of t,m1,m2, l, and v. In addition, we assume consistency and that L should include
all time-varying confounding variables. Assumption A1 states that kindergarten retention status
is ignorable given pre-treatment covariates. Assumption A2 states that student retention status in
year 3 is ignorable given the observed first treatment status, first mediator value, pre-treatment
covariates, and intermediate confounding variable.

The first line of assumption A3 states that there is no unmeasured confounding in the M1−Y
and M1 − M2 relationships. In our example, this implies that there is no confounding in the
relationships between classmate math score in year 2 and final math score (M1 −Y ) and between
classmate math score in years 2 and 3 (M1 − M2), given the first treatment and pre-treatment
covariates. The second line of assumption A3 states that there is no unmeasured confounding
between the M2 − Y relationship. This implies that there is no confounding in the relationship
between classmate math score in year 3 and final math score given the treatment and mediator
history, pre-treatment covariates, and intermediate confounding variable.

Under this sequential ignorability assumption, E[Y (t, 0, M1(t ′), M2(t ′′, 0, M1(t ′′), l), l)|v]
is identified up to a sensitivity parameter as follows.

E[Y (t, 0, M1(t
′), M2(t

′′, 0, l), l)|v]
=

∑

m2

∑

m1

∑

m′
1

E(Yi |t, 0,m1,m2, l, v) · P(M2i = m2|t ′′, 0,m′
1, l, v)

· P(M1i (t
′) = m1|M1i (t

′′) = m′
1, v) · P(M1i = m1|t ′′, v), (4)

for every m1,m′
1,m2, v, and l where t, t ′, t ′′ ∈ {0, 1}. The proof is given in “Appendices B and

C.” The boxed quantity in Eq. (4) is not identified because the conditional correlation between
M1i (t ′) and M1i (t ′′) given Vi = v, which is denoted as ρM1 , is not known. The issue here is that
this correlation coefficient is not empirically determined because we never observe individual
potential outcomes under different treatment statuses simultaneously. Therefore, this correlation
is used as a sensitivity parameter that ranges from 0 (no correlation across two potential outcomes)
to 1 (perfect correlation). Negative correlations are not considered because it is less likely that one
potential mediator tends to decrease when the other potential mediator increases (or vice versa)
after taking different treatment statuses and covariates into account.

We can estimate the ACME-l and ANDE-l for a fixed value of ρM1 using g-computation as
below.

1. Fit regressions for mediators and outcome models.
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2. Generate M1i (t) for t ∈ {0, 1} using predicted values of the mediator model of M1. The
errors for M1i (1) and M1i (0) are obtained by randomly drawing from mean of zero and
the covariance matrix with a fixed correlation value of ρM1 .

3. Generate M2i (t, 0, l) for t ∈ {0, 1}, incorporating the predicted values of the mediator
model of M1, which are obtained from step 2. Here, we set Li = l for every individual
rather than incorporating the predicted values of L .

4. Generate Y (t, 0, M1i (t ′), M2i (t ′′, 0, l), l) for t, t ′, t ′′ ∈ {0, 1}, incorporating the results
obtained from steps 2 and 3. Again, we put Li = l for every individual, rather than
incorporating the predicted values of L .

5. Using the potential outcomes obtained from step 4, the ACME-l and ANDE-l are esti-
mated by averaging over individuals. Calculate 95% confidence intervals using the
bootstrap.

This g-computation approach is flexible in that the ACME-l and ANDE-l are estimable under
both parametric and nonparametric settings. In a parametric setting, the sensitivity parameter,ρM1 ,
is only required when interaction effects exist between two mediators (M1 and M2) with respect
to the outcome. To see this, suppose that we have the following simple data-generating model
for two potential mediators under different treatment statuses: M1(t

′) = α0 + α1t
′ + U1i (t

′), and
M2(t, 0, M1(t), l) = γ0+γ1t+γ2M1(t)+γ3l+U2i (t), where α and γ are constant regression coefficients,
andUi is individual error. For notational simplicity, we did not include pre-treatment covariates and
interaction effects between the treatment and themediator in this data-generatingmodel. However,
the result does not change even after including pre-treatment covariates and interaction effects
between the treatment and themediator. Under this data-generatingmodel, the interaction between
the two potential mediators (M1(t ′) × M2(t, 0, M1(t), l)) with respect to the outcome requires
a correlation between U1i (t ′) and U1i (t) in order to be uniquely identified. This implies that
sensitivity analysis is unnecessary under a parametric setting if one can assume homogeneous
effects and no-interaction effects between two mediators with respect to the outcome.

5. Bias Formula Under Heterogeneous Effects

In this section, we relax the assumption that every subject has the same constant effect
and allow for systematic or random variations of the effects. Specifically, we introduce how to
accommodate additional bias that emerges under heterogeneous effects by means of sensitivity
analysis, which was used in Imai and Yamamoto (2013) in the context of multiple mediators.

We begin by presenting the parametric data-generating model with heterogeneous effects,
since this sensitivity analysis accommodating additional bias is model-specific. This means that
sensitivity analysis may no longer apply if the data-generating model was different than what was
proposed here. The causal diagram in Fig. 1 can be expressed as shown below, using the following
linear structural equations with varying coefficients.

M1 = α0i + α1i T1 + α2i V +U1i

M2 = γ0i + γ1i T1 + γ2i M1 + γ3i L + γ4i T2 + γ5i T1M1 + γ6i V +U3i

Y = e0i + e1i T1 + e2i M1 + e3i L + e4i T2 + e5i M2 + e6i T1M1 + e7i T1M2

+ e8i M1L + e9i M2L + e10i V +U4i (5)

where αi , γi , and ei are structural coefficients, and Ui is an exogenous error for individual i .
The structural coefficients’ subscript i indicates that the effects are heterogeneous across indi-
viduals, and thus, each varying coefficient represents a random variable, rather than a constant
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value. While this model is flexible enough to accommodate individual heterogeneous effects and
various interaction effects (in the T − M and M − L relationships), we assume no interactions
in the mediator–mediator relationship, as in Imai and Yamamoto (2013). Including the mediator–
mediator interactions while addressing effect heterogeneity is not impossible, but it increases the
complexity of the bias formulas.

Suppose now that we are interested in the ACME-l and ANDE-l and that we do not assume
effect homogeneity. The bias is defined as the difference between the average effect estimate under
the homogenous effects and the true effect under heterogeneous effects. In formal expression,
bias(δ̂M1(t, l)) = E[δ̂M1(t, l)] − δM1(t, l) where E[δ̂M1(t, l)] is the expected estimate obtained
as a result of assuming homogeneous effects, given assumptions A1–A3. Now, allowing for
heterogeneous effects, the bias formulas for δ̂M1(t, l), δ̂M2(t, l), and ζ̂ (t ′, l) are given as follows.

bias(δ̂M1(t, l)) = 0,

bias(δ̂M2(t, l)) = ρM2σe7

√
V (M2i |T1i = t ′, T2i = 0, Li = l), and

bias(ζ̂ (t ′, l)) = −ρM2σe7

√
V (M2i |T1i = t ′, T2i = 0, Li = l), (6)

for t ∈ {0, 1}, t = 1− t ′ where σe7 = √
V (e7i ), and ρM2 indicates the correlation between e7i and

M2i (t ′, 0, l). A proof is shown in “Appendix D.” This bias formula indicates that the ACME-l via
M1 is not affected by the effect heterogeneity. In contrast, the ACME-l via M2 and ANDE-l will
be biased if the effects are heterogeneous across individuals. The bias originates from these two
random terms: 1) interaction effects between treatment and mediator across individuals (e7i ), and
2) the potential value of the second mediator (M2i (t ′, 0, l)). The standard deviation of the poten-
tial second mediator can be consistently estimated by the sample counterparts, while the standard
deviation of the varying coefficient (σe7 ) and the correlation between the two random terms (i.e.,
M2i (t ′, 0, l) and e7i ) are not empirically known. Therefore, these two unknown terms will serve
as sensitivity parameters. The correlation indicates the direction of the bias, which determines
whether the bias is upward or downward; and the standard deviation of the varying coefficient
represents the amount of heterogeneity across individuals. Using these sensitivity parameters, we
can examine the sensitivity of effect estimates in response to the change in these two unknown sen-
sitivity parameters. Specifically, we can obtain the upper and lower bounds of δM2(t, l) or ζ(t ′, l)
for every assumed value of σe7 because the correlation ρM2 is bounded to have values between−1
to 1. For example, the bias of δ̂M2(t, l) falls between 0.5σe7 and − 0.5σe7 for a fixed value of σe7
if the standard deviation of the potential second mediator (

√
V (M2i |T1i = t ′, T2i = 0, Li = l))

was 0.5, which can be obtained from a sample.
From Eq. (6), we realize that the bias would have been zero if either ρM2 = 0 (no correlation

between e7i and M2i (t ′, 0, l)) or σe7 = 0 (a constant effect of e7). This indicates that the ACME-l
and ANDE-l are identified without sensitivity parameters if we can assume no-interaction effects
in the T1 − M2 relationship (in addition to assuming no interactions in the M1 − M2 relationship)
with respect to the outcome under heterogeneous effects. If the no-interaction-effects assumption
is satisfied, the ACME-l via M2 is identified as δM2(0, l) = δM2(1, l) = E[(e5i + le9i ) × (γ1i +
α1i (γ2i + γ5i ))], using the product of coefficient approach.

One attractive feature of this alternative definition of ACME-l and ANDE-l is the general-
izability to a model beyond two time periods. The bias formula for the ACME-l via Mk (where
k ∈ K denotes a number of time periods) remains the same even when the model is extended
beyond two time periods if the model follows the same model specification as in Eq. (5). See
“Appendix E” for extending this bias formulas to a model beyond two time periods.
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Figure 4.
Covariate imbalance by retention status before weighting.Note Standardized difference in means: standardized difference
in covariate means, and variance ratio: covariates’ variance ratio between treated and controlled units. a Year 1. b Year 3

6. Case Study

We illustrate the use of our proposed approach under homogeneous and heterogeneous effects
with an empirical study about the mechanisms, underlying the relationship between kindergarten
retention policy and final math score.

6.1. Assumptions and Models

As previously discussed, assumptions A1 and A2 in Eq. (3) are satisfied if the two reten-
tion statuses are sequentially randomized. Unfortunately, our data are non-experimental because
researchers do not have control over retention decisions. Although we used an extensive set of
pre-treatment covariates as shown in Sect. 2, the lack of control makes our study more sensi-
tive to unobserved confounding. We carefully checked covariate balance and overlap between
the treated and controlled units. As shown in Fig. 4, covariate distributions between those who
were retained and promoted are substantially different. The left and right plots of Fig. 4 indicate
covariate imbalance by retention statuses measured in year 1 and 3, respectively. The X axis
represents the standardized difference in covariate means, and the Y axis represents the covari-
ates’ variance ratio between treated and controlled units. Covariate balance would be given if the
standardized mean difference were zero or very close to zero, and if the variance ratio were close
to one. Figure 5 assesses the overlap between the treatment and control group with respect to the
distribution of the propensity score logit. Again, the left and right overlap plot refers to year 1
and year 3, respectively. The figures show that the treatment group is more likely to be retained
than the control group and this leads to a lack of overlap on both tails of the distributions.

In fact, the proportion of students who are retained in year 1 and in year 3 is approximately
3%, which demonstrates that retention is a highly selective process (Hong & Raudenbush, 2006).
The overlap between retained and promoted students is thus weak, as shown in Fig. 4. As a
result, causal inference for areas of non-overlap would require extrapolation, which restricts the
credibility of conclusions (Imbens &Rubin, 2015). To circumvent this issue, we trimmed our data
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Figure 5.
Distributions of PS-Logit before trimming. Note PS-logit: The logit value of propensity scores. a Year 1, b Year 3

based on the logit of propensity scores to achieve overlap and better covariate balance between the
two groups.We trimmed observations that were outside of the limits constructed based on the logit
of propensity scores: (min− 0.05σLPS) and (max+0.05σLPS), wheremin is the maximum of the
treatment and control group’s minima, max is the corresponding minimum of the two maxima,
and σLPS is the standard deviation of the logit of propensity scores.

After trimming the data, we re-estimated the propensity scores (PSs) based on the remain-
ing 286 kindergarten retainees and 4143 promoters. We obtained PS weights using the CBPS R
package (Fong, Ratkovic, & Imai, 2014). By means of generalized method of moments, the PS
is estimated such that it maximizes the covariate balance as well as the prediction of the treat-
ment assignment (Imai & Ratkovic, 2015). After weighting, the covariate balance substantially
improved, as shown in Fig. 6. In year 1, all standardized mean differences are below the threshold
of 0.25 except for one variable (percentage of students retained at school). In year 3, eight out
of 42 variables had a difference larger than the threshold of 0.25, but none are larger than the
threshold of 0.5. Figure 7 also shows the overlap between the treatment and control groups based
on the trimmed data. In fact, trimming data is not only helpful to achieve overlap between the two
groups, but it also restricts the analytical sample to children who are more homogeneous in terms
of their retention probabilities. After trimming, the retention probability at kindergarten and in
year 3 ranged from 3 to 98% and from 1 to 61%, respectively.

Regarding assumption A3, we calculated Pearson’s correlation between classmate ability
and each covariate to examine whether there is a systematic relationship between them. From
Figs. 8 and 9, it is clear that the correlations substantially reduce after weighting. In addition to
A1–A3, we assume that L includes all exposure-induced confounding variables. In the context
of our example this assumption implies that student math achievement at year 2 is the only time-
varying confounding variable. This assumption is probably not very realistic and, unfortunately,
not directly testable.

Given these assumptions, we use the same causal structuralmodels as in Eq. (5) formediators,
time-varying confounder, and outcome models. Although the same regression models were used
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Figure 6.
Covariate balance by retention status after weighting. Note Standardized difference in means: standardized difference in
covariate means, and variance ratio: covariates’ variance ratio between treated and controlled units. a Year 1. b Year 3
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Figure 7.
Distributions of PS-Logit after trimming. Note PS-logit: The logit value of propensity scores. a Year 1. b Year 3

as shown in Eq. (5) in this article, researchers in practice need to make their own judgments about
which interactions to include in their model. The impact of including interactions may differ
depending on whether the effects are assumed to be heterogeneous or homogenous. If the effects
are homogenous the approach of choosing a parsimonious model is reasonable (e.g., Daniel et
al. (2015)). However, this approach of choosing a parsimonious model may not be adequate to
address heterogeneity. This is because the interaction effects may vary across individuals (and
thus not zero) even when the interaction effect is not significantly different from zero on average.
Therefore, a decision to include interaction effects should be based on theoretical knowledge
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Figure 8.
Pearson correlations with the first mediator before and after weighting.
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Figure 9.
Pearson correlations with the second mediator before and after weighting.

rather than relying only on the statistical significance since the more flexible model addresses the
heterogeneity better.

The models for the first mediator, intermediate confounder, second mediator, and outcome
are weighted by w1, w1 × w2, w1 × w2 × w3, and w1 × w2 × w3 × w4,4 respectively, where

w1 =T1i × P(T1i = t)

P(T1i = t |Vi ) + (1 − T1i ) × (1 − P(T1i = t))

1 − P(T1i = t |Vi ) ,

w2 = f (M1i )

f (M1i |T1i , Vi ) ,

w3 = T2i × P(T2i = t |T1i )
P(T2i = t |Ti , M1i , Li , Vi )

+ (1 − T2i ) × (1 − P(T2i = t |T1i ))
1 − P(T2i = t |Ti , M1i , Li , Vi )

, and

w4 = f (M2i )

f (M2i |T1i , M1i , Li , T2i , Vi )
,

(7)

where f (·|·) is the conditional density function of its arguments. After fitting the regressions
incorporating weights, the ACME-l and ANDE-l are estimated by using the g-computation steps
introduced in Sect. 4. We fixed the intermediate math scores to the 25, 50 and 75 percentiles,
which represent low, medium, and high achievement conditions, respectively.

4We used the stabilized weight for W1 and W3 to avoid extreme weights as suggested by Robins, Hernan, and
Brumback (2000).



PSYCHOMETRIKA

Table 3.
Estimates for ACME and ANDE with the one-time period.

Est. 95% C.I. P value

δ̂(1) − 5.264 − 7.049 − 3.538 0.00
ζ̂ (1) − 2.013 − 3.570 − 0.397 0.01
δ̂(0) − 5.736 − 6.585 − 4.967 0.00
ζ̂ (0) − 2.485 − 4.745 − 0.187 0.03
τ̂ − 7.749 − 9.302 − 5.935 0.00

Est.=estimate, and 95% C.I.=95% confidence interval.

Table 4.
Estimates for ACME-l and ANDE-l with two time periods, by different level of L .

L = low L = med L = high

Est. 95% C.I. Est. 95% C.I. Est. 95% C.I.

δ̂M1 (1, l) 2.087 − 0.694 4.749 1.681 − 1.012 4.542 1.288 − 1.389 4.087
δ̂M2 (1, l) − 2.371 − 4.944 − 0.217 − 2.467 − 5.188 − 0.161 − 2.548 − 5.250 0.154
ζ̂ (1, l) 0.899 − 3.264 4.701 1.057 − 2.945 4.978 1.063 − 2.744 4.707
δ̂M1 (0, l) 4.366 3.650 5.113 3.981 3.277 4.686 3.632 2.934 4.381
δ̂M2 (0, l) − 2.117 − 4.292 − 0.199 − 2.234 −4.476 − 0.139 − 2.327 − 4.557 0.125
ζ̂ (0, l) 3.431 0.451 6.178 3.589 0.847 6.344 3.629 0.877 6.417
τ̂ (l) 3.147 − 1.562 7.253 2.804 −2.013 7.155 2.368 − 2.167 6.764

Est.=estimate, and 95% C.I.=95% confidence interval.

6.2. Results

In response to the first causal question given in the introduction, we begin by examining the
results of the single-time-period causal mediation model using the intermediate math score as the
outcome variable. Consistent with the previous studies, there is a negative effect of kindergarten
retention on math score. Table 3 shows that students would have scored 7.7 points higher if they
were promoted instead of retained, which is consistent with Hong and Raudenbush (2006). In
addition, a large fraction of the negative effect is via the ability level of classmates during the
first year after kindergarten retention. The retained students would have scored 5.3 points higher
had they been interacting with same-age peers. Promoted students would have scored 5.7 points
lower had they been interacting with one-year-younger peers.

Nowour question centers onwhether the emergingmediation effect via classmatemath ability
is still negative one year after the kindergarten retention (second and third causal questions). In
order to answer this question, we computed effect estimates for ACME-l and ANDE-l, which
are shown in Table 4. From the left hand side, we present estimates, and upper and lower 95%
confidence intervals for L = low and the same quantities for L = medium and L = high.
Interestingly, the results indicate that some emerging mediation effects via classmate math ability
became positive after 1year. The mediation effect via classmate math ability in year 1 (δM1(0, l))
for promoted low achievers is 4.37. This implies that the kindergarten retention effect on math
score via classmate effects is strongly negative in the short term (1year). However, a positive
mediation effect appears in the long term (3years), which was not captured in the single-time-
period analysis. For both retained and promoted conditions, the positive effect would be stronger
if students had a low intermediate math score as compared to a high score.
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Figure 10.
Sensitivity analysis when L = low.

The results also indicate that a negative mediation effect of kindergarten retention through
the ability level of classmates in year 4 (δM2(0, l)) persists even after removing the effect via the
intermediate math score, although the magnitude of the effect is smaller. The negative mediation
effects vary between − 2.37 and − 2.55 for the retained condition and between − 2.12 and −
2.33 for the promoted condition. For both retained and promoted conditions, the negative effect
would be stronger if students had a high intermediate math score as compared to a low score.

Allowing for heterogeneous effects, our sensitivity analysis suggests that the results on the
ANDE-l and the ACME-l via M2 are fairly responsive to the amount of heterogeneity across
individuals. Figures 10 and 11 present sensitivity plots when the intermediate math score is fixed
to L = low and L = high, respectively. The X axis indicates the amount of heterogeneity (SD
of the varying coefficient on the treatment–mediator interaction), and the Y axis indicates the
upper and lower bounds of the estimates. A dotted line indicates the estimate when homogenous
effects can be assumed. As the amount of heterogeneity increases, the bias becomes larger. The
95% confidence intervals are shown in gray. About 0.20 SD and 0.12 SD of effect heterogeneity
can change the sign of the estimates of the ANDE-l and the ACME-l via M2 for the promoted
condition.

7. Conclusion

In this article we proposed some extensions to causal mediation analysis with time-varying
treatments and mediators and discussed their application in investigating the mechanisms under-
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Figure 11.
Sensitivity analysis when L = high. Note X axis: standard deviation of varying coefficients on the T − M2 interaction,
Y axis: upper and lower bounds of effect estimates, and gray area: 95% confidence intervals of effect estimates.

lying the relationship between kindergarten retention and student math achievement scores. To
overcome the limitations of existing causal mediation analyses with longitudinal data, we dis-
cussed a partial identification strategy (following Daniel et al. 2015) that identifies the mediated
and natural direct effects up to some sensitivity parameters. In a sensitivity analysis the researcher
can then assess the effects’ robustness to a range of possible values of the unknown sensitivity
parameters.

In addition, we discussed alternative definitions for ACME and ANDE for fixed values of the
confounding intermediate variable. The alternative definitions fix the intermediate confounding
variable at a certain value and thus investigate the mediation effect where the indirect effect via the
intermediate confounding variable is blocked. That is, we only evaluate a partial mediation effect,
the effect that is mediated by paths other than through the intermediate confounding variable.
Evaluating the alternative ACME-l and ANDE-l at different values for the intermediate variable
also allows for a useful investigation of effect heterogeneity. Though we cannot estimate the
overall ACME and ANDE, we believe that the alternative versions of the effects are still valuable
because they allowus to better assess at least a part of themediated effect. As before, the alternative
ACME-l and ANDE-l are only identified up to unknown sensitivity parameters. Corresponding
sensitivity analyses can be used to assess the robustness of estimates under both homogeneous
and heterogeneous effects.

A drawback of the suggested mediation analyses is that they require the specification of
unknown sensitivity parameters. However, if the effect estimates are rather insensitive to a broad
range of parameter settings, valid conclusions about the direction of the effects are still possible.
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Another limitation of the proposed analyses is that they allow for a single intermediate confounder
only (as is also the case for the analyses suggested byDaniel et al. 2015). For the alternativeACME
andANDE this limitation can be overcome by setting the entire vector of intermediate confounders
to fixed values, but as more mediating pathways via intermediate confounding variables are
blocked, partially identified effects become less meaningful. Thus, in practice researchers face a
trade-off between restricting the meaningfulness of the alternative ACME and ANDE andmaking
strong, probably implausible assumptions about the presence of intermediate confounders.
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Appendix

A. An Aside: Randomized Interventional Analogues

VanderWeele and Tchetgen Tchetgen (2016) proposed the use of randomized interventional
analogues of ACME and ANDE, which date back to Didelez, Dawid, and Geneletti (2012) and
Geneletti (2007).Rather thanfixing themediators at values theywould havehad for each individual
under a particular treatment status, the randomized analogues fix themediators to values randomly
drawn from themediator distribution, given a particular treatment status. Their approach preserves
the distribution of mediators, but at the individual level, the values are randomly assigned from
the mediator distribution. As the authors argued in their work, these randomized analogues are
useful and even of greater interest than the ACME and ANDE in some scenarios. However,
one potential issue is that it is usually unknown how much of the true ACME is carried over
to the randomized interventional analogues of the ACME due to its randomness. In contrast,
our alternative definition does not include the indirect effect via the intermediate confounding
variable (intermediate math score), but the remaining mediation effect provides a meaningful
interpretation—that is, the mediation effects that have emerged over time.

B. Implications of Having an Intermediate Confounding Variable on the Identification
Assumptions

We follow the same logic as Daniel et al. (2015). Suppose that our data are generated non-
parametrically as,

M1 = gM1(V, T1,UM1)

L = gL(V, T1, M1,UL)

M2 = gM2(V, T1, T2, M1, L ,UM2)

Y = gY (V, T1, T2, M1, M2, L ,UY ) (8)

where g(·) is a deterministic function and {UM1,UM2 ,UL ,UY } are mutually independent.
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Then, the potential outcomes derived from the above data-generating models are shown as below.

M1(t) = gM1(V, t,UM1)

M1(t
′) = gM1(V, t ′,UM1)

L(t,m1) = gL(V, t,m1,UL)

L(t ′,m′
1) = gL(V, t ′,m′

1,UL)

M2(t, 0,m1) = gM2(V, t, 0,m1, gL(V, t,m1,UL),UM2)

M2(t
′, 0,m′

1) = gM2(V, t ′, 0,m′
1, gL(V, t ′,m′

1,UL),UM2)

Y (t, 0,m1,m2) = gY (V, t, 0,m1,m2, gL(V, t,m1,UL),UY )

Y (t, 0,m1,m2) = gY (V, t, 0,m1,m2, gL(V, t,m1,UL),UY ) (9)

Consider the following assumptions that are needed to identify ACME and ANDE.

M2i (t, 0,m1) ⊥ M1i (t
′)|V = v

Yi (t, 0,m1,m2) ⊥ M1i (t
′)|V = v

Yi (t, 0,m1,m2) ⊥ M2i (t
′0,m′

1)|L = l, V = v

(10)

for every m1,m2 and v where t, t ′ ∈ {0, 1}. The first and second assumptions of (10) are satisfied
as far as the first line of A3 (no unobserved confounding in M1 − M2 and M1 − Y relationships)
is met. However, the third assumption of (10) is not satisfied because of L , even when the second
line of A3 (no unmeasured confounding in the M2 − Y relationship) is met. It is because the
intermediate confounding variable L is affected by T1 and also has an impact to both M2 and Y .
As shown in the potential outcomes above, both Yi (t, 0,m1,m2) and M2i (t ′0,m1) involve UL

and thus violate the third assumption of (10). Due to this violation of this assumption, we need
A4 instead in order to identify ACME and ANDE.

On the other hand, the third assumption is met if the intermediate confounding variable is
fixed to L = l. Formally, Y (t, 0,m1,m2, l) ⊥ M2(t ′0,m1, l)|V = v. It is because L is no longer
affected by T1 but is fixed to a certain value. Other assumptions in A1–A3 as well as the first two
assumptions in (10) hold even after L is fixed to l.

C. Identification of the Alternative ACME-l and ANDE-l Under the Homogeneous Effects

First, we have

E[Y (t, 0, M1(t
′), M2(t

′′, 0, M1(t
′′), l), l)|v]

=
∑

m2

∑

m1

∑

m′
1

E(Yi (t, 0,m1,m2, l)|M2(t
′′, 0,m′

1, l) = m2, M1(t
′)

= m1, M1(t
′′) = m′

1, v)

·P(M2(t
′′, 0,m′

1, l) = m2|M1(t
′) = m1, M1(t

′′) = m′
1, v) · P(M1(t

′)
= m1|M1(t

′′) = m′
1, v) · P(M1(t

′′) = m′
1|v)

=
∑

m2

∑

m1

∑

m′
1

E(Yi (t, 0,m1,m2, l)|v) · P(M2(t
′′, 0,m′

1, l) = m2|v)

·P(M1(t
′) = m1|M1(t

′′) = m′
1, v)P(M1(t

′′) = m′
1|v)

=
∑

m2

∑

m1

∑

m′
1

E(Yi |t, 0,m1,m2, l, v) · P(M2i = m2|t ′′, 0,m′
1, l, v)
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· P(M1i (t
′) = m1|M1i (t

′′) = m′
1, v) · P(M1i = m1|t ′′, v) (11)

for every m1,m′
1,m2, v and l, where t, t ′, t ′′ ∈ {0, 1}. The first equality is due to the law of

total probability. The second equality is because the intermediate confounding variable is fixed
to Li = l with the implications of “Appendix B.” The third equality holds because of A1–A3,
which still hold after fixing L = l. The ACME-l and ANDE-l can be obtained after plugging this
identification result to Eq. (2). This completes the proof.

D. Bias of δ̂M2(t, 0, l) Under Heterogeneous Effects

Note that this proof is an extension of the proof shown in Imai and Yamamoto (2013). Based
on the models shown in Eq. (5), δM1(t, l) is identified as

= E{(e2i + t · e6i + l · e8i )(M1i (1) − M1i (0))}
= (e2 + t · e6 + l · e8){E(M1i |T1i = 1) − E(M1i |T1i = 0)} (12)

where t ∈ {0, 1}. The second equality follows becauseM1i (t ′) is independent toYi (t, 0,m1,m2, l)
for every t, t ′,m1,m2, l as implied in “Appendix A”ss; and (e2i + t · e6i + l · e8i ) is in fact
Yi (t, 0,m1,m2, l) − Y (t, 0,m′

1,m2, l) for every t,m1,m′
1,m2, and l. Therefore, the δM1(t, l) is

identified without further complications. In contrast, the identification of δM2(t, l) requires two
sensitivity parameters and is shown below.

δM2(t, l) = E{(e5i + t · e7i + l · e9i )(M2i (1, 0, l) − M2i (0, 0, l))}
= E{(e5i + e7i + l · e9i )M2i (1, 0, l)|T1i = 1} − E{(e5i + l · e9i )M2i (0, 0, l)|T1i = 0)}

− E{e7i M2i (t
′, 0, l)}

= E(e5i + e7i + l · e9i )E(M2i (1, 0, l)|T1i = 1})
− E(e5i + l · e9i )E(M2i (0, 0, l)|T1i = 0)

− E{e7i M2i (t
′, 0, l)}

= (e5 + e7 + l · e9)E(M2i |T1i = 1, T2i = 0, Li = l)

− (e5 + l · e9)E(M2i |T1i = 0, T2i = 0, Li = l)

− e7E{M2i |T1i = t ′, T2i = 0, Li = l)}
− ρσe7

√
V (M2i |T1i = t ′, T2i = 0, Li = l) (13)

for every t, t ′, and l and σe7 = √
V (e7i ); and ρ is the correlation between e7i and M2i (t ′, l). The

second equality follows from assumption A1 (the first treatment is ignorable given covariates),
which still holds after fixing L = l. The third equality is because e5i +t ·e7i +l ·e9i is conditionally
independent toM2i (t, 0, l) under assumption A3, which still holds after fixing L = l. It is because
e2i + e6i + l · e8i is same as Yi (t, 0,m1,m2, l) − Yi (t, 0,m1,m′

2, l) for every m1,m2,m′
2 and

l. The last equality is because of the fact that two random variables, e7i and M2i (t ′, 0, l), are
not independent. This term, ρ1σe7

√
V (M2i |T1i = t ′, T2i = 0, Li = l), indicates the covariance

between the two random variables.
Assuming homogeneous effects, one will simply obtain δ̂M2(t, l) = (e5 + e7 + l ·

e9)E(M2i |T1i = 1, T2i = 0, Li = l) − (e5 + l · e9)E(M2i |T1i = 0, T2i = 0, Li = l) since
e7 is no longer a random variable. The bias given in Eq. (6) is obtained by calculating the differ-
ence between δ̂M2(t, 0, l) and δM2(t, 0, l). Bias for ζ(t ′, 0, l) is computed using the fact that the
bias of combined effect of δM1(t), δM2(t) and ζ(t ′) is zero. This completes the proof.
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E. Generalizability to an Extended Setting

One attractive feature of this alternative definition of ACME-l and ANDE-l is the general-
izability to a model beyond two time periods. The bias formula for the ACME-l via Mk

(where k ∈ K denotes a number of time periods) remains the same even when the model
is extended beyond two time periods if the model follows the same model specification as in
Eq. (5). This implies that the model should not include the interaction effects among media-
tors (e.g., M1 · M2) or higher order terms of mediators (e.g., M2

2 ). Given this model specifica-
tion, the bias formula for the ACME-l via M3, for instance, is expressed as bias(δ̂M3(t, l)) =
ρM3σeT1M3

√
V (M3i |T1i = t ′, T2i = 0, L1 = l, L2 = l) where σeT1M3

is
√
V (eT1M3i ) in which eT1M3i is

the interaction effect between T1 and M3, and ρM3 is the correlation between eT1M3i and M3i (t
′, 0, l, l).

This bias formula has the same form as Eq. (6), but the only difference is that the bias is due the
interaction effect in the T1 − M3 relationship as compared to the interaction in the T1 − M2 rela-
tionship. This bias formula holds even when Lk is affected by a previously measured time-varying
confounding variable or Lk itself affects the following mediators.

However, this simple generalization to a model beyond two time periods only holds when
the time-varying treatments measured after the first time period are all fixed as in our exam-
ple (e.g., T2 = T3 = T4 = · · · = 0). If this does not hold, the bias formulas shown
in Eq. (6) depend on more than two sensitivity parameters. To see this, suppose that T2 is
not fixed to zero. Then, bias(δ̂(M2)(t, t, l) = ρM2σe7

√
V (M2i |T1i = t ′, T2i = t ′, Li = l) +

ρM2T2σeT2M2

√
V (M2i |T1i = t ′, T2i = t ′, Li = l), where eT2M2i is the interaction effect between

T2 and M2, and ρM2T2 is the correlation between eT2M2 and M2(t ′, t ′, l). This bias formula shows
that interaction effects between T2 and M2 contribute additionally to the bias formula shown in
Eq. (6). As discussed above, extending the proposed bias formulas to a more general time-varying
treatments and mediators setting is not impossible. However, sensitivity analysis based on this
extended bias formula becomes dependent on more than two parameters, which is undesirable
when examining the sensitivity of effect estimates.
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