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Introduction
A recent paper by Kaplan and Su (2016) investigated the problem of matrix sampling 
of context questionnaires with respect to the generation of the plausible values (PVs) 
of the so-called “cognitive” tests in large-scale educational assessments. Drawing on 
earlier work by Adams et al. (2013) based on PISA 2012 OECD (2014) and motivated 
by the desire among policy-makers to increase non-cognitive content in national and 
international large-scale assessments, Kaplan and Su found that matrix sampling of con-
text questionnaire (CQ) material followed by predictive mean matching imputation can 
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quite accurately recover the known marginal distributions of the PVs. However, bias 
was found in the estimation of correlations between CQ scales and PVs.1 Kaplan and 
Su (2016) speculated that this bias was due to the fact that the plausible values were 
not part of the missing data imputation model and hence not “congenial” in the sense of 
Meng (1994).

In this paper, we investigate two approaches to multiple imputation that use PVs in 
the imputation model for the missing CQ data. To our knowledge, the two approaches 
discussed in Weirich et  al. (2014) have not been studied across different missing data 
designs, and so an important feature of this paper is that we compare these approaches 
under three planned missing data designs: a two-form design examined by Adams et al. 
(2013), a three-form design that was used for PISA 2012, and a partially balanced incom-
plete block design (PBIB) studied by Kaplan and Su (2016). We carry out our investiga-
tion by simulating these designs on data from PISA 2006, allowing a comparison of our 
findings to the actual empirical data. We evaluate the marginal distributions of the PVs, 
the correlations among the imputed CQ variables and the PVs as well as the estimates 
of regression coefficients and their corresponding standard errors, by comparing to the 
original questionnaire without matrix sampling and imputation.

The organization of this paper is as follows. In the next section, we provide a review 
of the literature on missing data in large-scale assessments by first suggesting that prior 
research on the topic can be situated within the framework of congenial missing data 
problems. This is followed by an overview of the matrix sampling designs used in this 
study. This is then followed by a description of the simulation design for this paper. Next, 
we provide the results of our simulation studies focusing on recovery of marginal distri-
butions of PVs, bias in the correlations among the CQ and PVs, and bias in regression 
coefficients and their standard errors from a regression of the PVs on the CQ scales. The 
paper closes with a discussion of the results in light of recent calls for increased focus on 
the policy importance of context questionnaires in large-scale assessments.

Background
As noted earlier, one finding of the Kaplan and Su (2016) paper was that correlations 
among the PVs and imputed CQ scales were biased. Kaplan and Su speculated that this 
bias was due, in part, to the fact that the PVs themselves were not included in the impu-
tation models that they explored. Omitting the PVs as part of the imputation process 
leads to uncongeniality between the imputation model and the analysis model. This is a 
particular problem for secondary analyses of large-scale assessments insofar as the PVs 
of the cognitive assessments are, arguably, of primary policy importance.

Congenial missing data problems

We situate our discussion of imputation under planned missing data within the frame-
work of congenial missing data problems. The concept of congeniality in missing data 
problems was introduced by Meng (1994), (see also; Rubin (1996)). In outlining the 
steps in conducting a large-scale survey, Meng (1994) pointed out that each step in the 

1 For this paper, we focus on scales rather than the items that make up the scales. Matrix sampling of items within 
scales is a topic that is beyond the scope of this paper.
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construction of a large-scale survey inherits information from the previous step. That is, 
the data file that a researcher uses is the result of a set of design steps which includes, in 
important ways, decisions that are made regarding the imputation of missing data. In 
many cases, as Meng (1994) notes, the individual (or individuals) charged with decisions 
regarding missing data imputation has little or no contact with the end-user of the data. 
Thus, if an analyst is interested in conducting some secondary statistical analysis using 
the data, his/her statistical model may have little in common with the model used to 
impute the missing data and this “disconnect” can lead to serious biases. Quoting Meng 
(1994, p. 539)

“...uncongeniality... essentially means that the analysis procedure does not corre-
spond to the imputation model. The uncongeniality arises when the analyst and the 
imputer have access to different amounts and sources of information, and have dif-
ferent assessments (e.g., explicit model, implicit judgement) about both responses 
and non-responses. If the imputer’s assessment is far from reality, then, as Rubin 
(1995)2 wrote, “all methods for handling nonresponse are in trouble” based on such 
an assessment; all statistical inferences need underlying key assumptions to hold at 
least approximately. If the imputer’s model is reasonably accurate, then following 
the multiple-imputation recipe prevents the analyst from producing inferences with 
serious nonresponse biases.”

The problem of uncongeniality has led to the general principle that one should include 
as many variables as possible in the imputation model for the missing data (see e.g. 
Rubin (1996)). Considering that the PVs in the various knowledge domains are a central 
focus of large-scale assessments, one purpose of this paper is to examine how PVs can 
be generated and used in the imputation of planned missing CQ data under different 
imputation methods and different designs and how these methods and designs impact 
the potential biases in secondary analyses.

Related research

Much of the extant literature addressing the topic of missing data in the CQ has focused 
on its impact with respect to the model used in generating population and sub-popu-
lation ability estimates of plausible values (e.g. Mislevy (1991); von Davier et al. (2009); 
Rutkowski (2011)) and on item or variable non-response (e.g. Aßman et al. (2015)). The 
general finding is that sub-population estimates of plausible values are relatively stable 
under conditions of missing-at-random and not-missing-at random (Rutkowski 2011). 
The present paper continues along the line of inquiry found in von Davier (2014) and 
Kaplan and Su (2016) focusing on planned missing data arising from a deliberate matrix 
sampling of the CQ. As noted earlier, we extend on this current work by examining alter-
native planned missing data designs and by examining alternative approaches to imput-
ing missing data in the CQ.

There are many approaches to addressing missing data in the CQ when generating 
PVs. A rather ad hoc method implemented in PISA is to use country means for missing 
values and create dummy codes to indicate missingness in the CQ. This is then followed 

2 This paper was eventually published as Rubin (1996).
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by a principal components analysis to reduce dimensionality and ease the computation 
of the PVs. The difficulty with the dummy coding approach, as pointed out by Aßman 
et al. (2015), is that it does not incorporate the PVs as part of the CQ imputation. This, 
in turn, results in an uncongenial missing data model and also does not address uncer-
tainty arising from the missing data in the CQ. To explicitly address uncertainty arising 
from the missing data requires the use of multiple imputation methods (Rubin 1987). 
In principle, non-parametric or parametric methods can be used, however the question 
remains how the PVs can be incorporated into the imputation of the CQ missing data.

Rather than using dummy variables that are coded to address missing data, a general 
approach to incorporating PVs into the imputation of the CQ is through the use of mul-
tiple imputation (Rubin 1987). A discussion of multiple imputation using PVs for CQ 
imputation was provided by Weirich et al. (2014). In their paper, Weirich et al. (2014) 
distinguish between two approaches to multiple imputation in this context: single + mul-
tiple imputation (SMI) and multiple + multiple imputation (MMI). Following Weirich 
et al. (2014), four steps are required for the SMI approach. The first step is to create a of 
the item response model for the cognitive assessment without the use of the CQ. A sim-
ple marginal maximum likelihood approach can be used for this step. The second step 
involves imputation of the CQ using a proxy for the latent ability θ . Proxies could include 
simple percentage correct, maximum likelihood estimates (MLEs), or Warm weighted 
likelihood estimates (WLEs; Warm (1989)). However, should be noted that these prox-
ies are biased estimates of latent ability. Indeed, an important contribution of our paper 
is that we will use the generated PVs directly in the imputation of the CQ. The third 
step requires estimating the parameters of a latent regression model in which the latent 
ability variable is regressed on the set of CQ variables, where the CQ is now completed 
due to the imputation from the second step. This step is required in order to impute 
plausible values of the latent ability distribution and is standard procedure in large-scale 
assessments (see, e.g. von Davier (2014)).3 The fourth step is the generation of the PVs 
based on a “completed” CQ.

As shown by Weirich et al. (2014), the SMI approach does reduce bias in the popula-
tion model when the uncertainty in the CQ depends on θ . However, as they also note, 
the SMI approach is still not optimal because there exists uncertainty in the estimation 
of θ due to missingness in the CQ. To fully address this uncertainty, Weirich et al. (2014) 
advocate for the MMI approach. The MMI approach is based on the notion of nested 
(or two-stage) multiple imputation developed by Rubin (2003), (see also; Schafer and 
Graham (2002); Reiter and Raghunathan (2007); Harel (2007)). The basic steps of MMI 
require that in the second step described for SMI, M imputations of the CQ are created. 
Step 3, then, must be repeated M times, and then this is followed by Step 4 where, say, 
K plausible values are drawn from the posterior distribution of latent ability resulting in 
M × K  plausible values. As noted by Rubin (2003, p. 6), the usual combining rules under 
multiple imputation must be modified because nested imputations are correlated.

In an extensive simulation study, Weirich et al. (2014) found that the SMI and MMI 
approaches provided roughly comparable reduction of bias in the population model. 

3 This latent regression is often referred to as the conditioning model or population model.
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They go on to suggest that one limitation of their study was the use of the WLEs as prox-
ies for θ . As noted by Wu (2005), the problem with using WLEs as proxies for θ is that 
it is a biased estimate of the population mean unless the same test items are given to all 
respondents—which is not the case with international large-scale assessments such as 
PISA which utilize a balanced incomplete-block spiraling design for test booklets. More-
over, as pointed out by Mislevy et al. (1992), WLEs are susceptible to scale unreliability. 
We address the problem of using WLEs by estimating PVs directly in the imputation 
process.

The present paper focuses on the development of a complete data base for secondary 
statistical modeling and expands the work of Weirich et al. (2014) in several ways. First, 
as noted earlier, our focus is specifically on the problem of planned missing data designs 
in the CQ as implemented in the 2012 cycle of PISA rather than item/variable missing 
data. Second, we examine the SMI and MMI approaches to multiple imputation across 
three different designs that are relevant to large-scale assessments. Finally, our focus is 
on the perspective of the secondary data-analyst. Specifically, we focus on bias in cor-
relations and regression coefficients derived from secondary studies, rather than bias in 
item parameters.

Matrix sampling designs for the context questionnaire
A classic study of matrix sampling designs can be found in Shoemaker (1973) who pro-
vided procedural guidelines and computational formulas for a variety of matrix sampling 
designs. More recently, Frey et al. (2009) provided a didactic discussion of matrix sam-
pling designs, carefully outlining theoretical and practical implications for a variety of 
different designs. Gonzalez and Rutkowski (2010) also outlined a variety of matrix sam-
pling designs and showed the impact of these designs on item and person parameter 
recovery in a simulation study of a large-scale assessment.

In this section, we first introduce the PISA 2006 student context questionnaire data 
that we use in our study and then the three matrix sampling designs that we implement. 
The original context questionnaire of PISA 2006 contains all respondents’ background 
information. In order to investigate what would happen if we would have implemented a 
matrix sampling design on the context questionnaire, we simulate the two-form design, 
three-form design, and the PBIB design, using the US data of PISA 2006. To simulate 
a matrix sampling design, parts of respondents’ information are deleted (i.e., set to be 
missing) from the original CQ data. The missing information is then imputed so that the 
end-users have the complete data to conduct subsequent analyses.

Data

We use the 34 scales in the PISA 2006 context questionnaire as the background variables 
which are also used in the Adams et al. (2013) paper. Some of the scales are based on sin-
gle items, such as GENDER and AGE. Others, such as science self-concept (SCSCIE) are 
derived first from an IRT scaling of items constituting the construct. The resulting indi-
ces derived from the IRT scaling are then treated as manifest variables in the condition-
ing model. Based on the PISA 2006 technical report OECD (2009), dichotomous items 
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were scaled using a one-parameter Rasch model Rasch (1960), and items with more than 
two response categories were scaled using the partial-credit model (Masters 1982, see 
also; Masters and Wright (1997)). Table 1 describes the 34 scales in the two-form matrix 
sampling design. The US data consist of 5611 respondents. The initial missing data from 
the respondents are imputed to make sure the original CQ does not contain any item or 
scale missing data.

Table 1 Two-form design for PISA 2006 simulation study based on Adams et al. (2013)

HIGHCONF, INTCONF, PRGUSE and INTUSE were excluded from the matrix sampling design because of no USA data in these 
four variables

Questionnaire form 1 Questionnaire form 2

Common block

Scale name Scale description

 PROGN Country study program

 GRADE Grade

 AGE Age of the student

 GENDER Gender

 BMMJ Occupation of mother

 BFMJ Occupation of father

 BSMJ Occupation of self at 30

 MISCEDN Educational level of mother

 FISCED Educational level of father

 IMMIG Immigration status

 LANG Language at home

 DEFFORT Difference in effort

 CULTPOSS Classic literature, books of poetry, works of art

 HEDRES Study desk, quiet place to study, computer for school work, educa-
tional software, own calculator, books to help with school work, 
dictionary

 WEALTH Own room, internet link, dishwasher, DVD/VCR, three country-spe-
cific wealth items, number of cellphones, TVs, computers, cars

Block 1 Block 2

Scale name Scale description Scale name Scale description

 CARINFO Student information on science-
related careers

ENVOPT Environmental optimism

 CARPREP School preparation for science-
related careers

ENVPERC Perception of environmental issues

 ENVAWARE Awareness of environmental issues GENSCIE General value of science

 INSTSCIE Instrumental motivation in science INTSCIE General interest in learning science

 JOYSCIE Enjoyment of science PERSIE Personal value of science

 SCIEFUT Future-oriented science motivation RESPDEV Responsibility for sustainable develop-
ment

 SCINTACT Science teaching: interaction SCAPPLY Science teaching: focus on applications 
or models

 SCINVEST Science teaching: student investiga-
tions

SCHANDS Science teaching: hands-on activities

 SCSCIE Science self-concept SCIEACT Science activities

SCIEEFF Science self-efficacy
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Two‑form design (Adams et al. 2013)

We arrange the original questionnaire according to the design in Adams et  al. (2013) 
using a joint conditioning approach with two questionnaire forms. In the two-form 
design, three mutually exclusive blocks of scales in the questionnaire are created. Table 1 
shows the two-form design studied by Adams et al. (2013). The first block, referred to as 
the common block with 15 scales, is assigned to both questionnaire forms. The remaining 
two blocks (block 1 containing 9 scales and block 2 containing 10 scales) are assigned to 
each of the questionnaire forms, respectively. Thus, each questionnaire form contains 
the common block and one of the two rotated blocks. The scales are allocated to the 
blocks according to the principle that the average correlation between science perfor-
mance and the scales from block 1 is similar to the average correlation between science 
performance and the scales from block 2. We assign the common block to the 5611 
respondents, then we randomly assign block 1 to half of the respondents and block 2 
to the other half. This implies that respondents who receive block 1 have data deleted 
in block 2, and vice versa. In this design, the 15 scales in the common block do not have 
any missing data, while the 19 scales in blocks 1 and 2 have 50% of missing data. Because 
no respondents simultaneously receive blocks 1 and 2, we cannot estimate correlations 
or the interaction effects of the scales across the blocks using the traditional deletion 
methods (i.e., listwise or pairwise deletion). Even if we used multiple imputation or full 
information maximum likelihood methods to deal with missing data, the correlations 
and regression coefficients would still be biased due to this two-form design.

Three‑form design: PISA 2012

The second design we explore is the three-form design (see Graham et al. (2006)). The 
three-form design was implemented in PISA 2012 and is a focus of attention in this 
paper insofar as PISA 2012 was the first large-scale educational assessment to imple-
ment a CQ matrix sampling design in their main study. In this design, we keep the com-
mon block of the questionnaire scales the same as in the Adams et al. (2013) two-form 
design and then arrange the remaining 19 scales into the three mutually exclusive blocks 
A, B and C (see Table 2). The three questionnaire forms contain any of the two blocks. 
As Table  2 shows, form 1 contains blocks A and B, form 2 contains blocks A and C, 
and form 3 contains blocks B and C. In addition to the rotation blocks, each question-
naire form also contains the common block. We randomly assign the three forms to the 
respondents. The missing percentage of the variables in the rotation blocks is 33, 17% 
less than the two-form design. Because all pairs of scales have observed data the correla-
tions and interactions of the variables across rotation blocks are estimable. The assign-
ment of the actual scales to the three forms can be seen in Table 3.

Table 2 Three-form design based on PISA 2012

Form Common block Rotation blocks

A B C

1 1 1 1 0

2 1 1 0 1

3 1 0 1 1
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Partially balanced incomplete block design (Kaplan and Su 2016)

The third design that we explore is a partially balanced incomplete block design (PBIB). This 
design was studied in Kaplan and Su (2016) but not in the context of employing generated 
PVs as part of the imputation of the missing CQ variables, nor in conjunction with the SMI 
or MMI approaches for multiple imputation. In this design, we keep the common block 
of the questionnaire scales the same as in Adams et al. (2013) design and then arrange the 
remaining 19 scales according to a PBIB design with three associate classes (Montgomery 
2012).4 The 19 scales are assigned to 19 forms but the missing percentage for each scale is 
still 50%, making it comparable to the two-form design. In our PBIB design, each cluster 
contains 9 or 10 scales as shown in Table 4. The scales are arranged in the 19 forms in such a 
fashion that all pairs of scales appear three, four or five times. For example, we see in Table 4 
that scales 1 and 3 appear together 3 times, scales 1 and 2 appear together 4 times, and 
scales 1 and 7 appear together 5 times. We assign the common block to all 5611 respond-
ents, then we randomly assign one of the 19 forms to each respondent. Respondents who 
get form 1 have data deleted on scale 1, 4, 7, 9, 13, and 15–19. As with the Adams et al. 
(2013) design, the 15 scales in the common block do not have any missing data, while the 19 
scales have 50% missing data. Unlike the two-form deisgn, the PBIB design ensures that all 
pairs of scales have observed data.

Simulation procedures
All analyses utilized the R programming environment R Core Team (2017). Functions 
for generating the PVs are given in Appendix A and functions to generate CQ simula-
tions are given in Appendix B. We first create the matrix sampling designs on the origi-
nal CQ data. Then in order to impute the missing data and to generate the PVs, we 
implement the SMI and MMI approaches of Weirich et al. (2014) with slight modifica-
tions. The simulation thus has six conditions in total, three matrix sampling designs by 
two approaches. The two approaches require us first to specify the item response model 
to obtain initial PVs, second impute the CQ missing data using the initial PVs, and finally 

Table 3 Variable assignment to blocks in the three-form design

Scale definitions can be found in Table 1

Form 1 Form 2 Form 3

Common block Common block Common block

Rotation bock 1 Rotation block 2 Rotation block 3

CARINFO SCINTACT PERSCIE

CARPREP SCINVEST RESPDEV

ENVAWARE SCSCIE SCAPPLY

INSTSCIE ENVOPT SCHANDS

JOYSCIE ENVPERC SCIEACT 

SCIEFUT GENSCIE SCIEEFF

INTSCIE

4 Associate classes are a feature of incomplete block designs and refer to the number of times a pair of scales (or 
items or variables) appear together. In a balanced incomplete block design, the associate classes are a constant—that 
is, the number of times a pair of scales appear together is the same for all pairs. For a partially balanced incomplete 
block design, we have multiple associate classes. The number of times a pair of scales appear together is different 
across pairs.
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using the imputed CQ data as the conditioning model to impute the final PVs. The dif-
ference between these two approaches is in the second step—the SMI or MMI methods 
for the CQ missing data. If we use SMI in the final step we generate five PVs based on 
the single imputed CQ. If we use MMI with five imputed CQs, in the final step 25 PVs 
will be generated since five PVs are generated using each of the five imputed CQs. We 
will then evaluate the distributions of the PVs under the six simulation conditions. The 
multiple PVs will also be used in the secondary analysis to explore the bias in the cor-
relations between the scales and the PVs and bias in regression coefficients and their 
standard errors.

Calibration

In the first step, we specify the item response model. For this purpose, we use the “TAM” 
package (Kiefer et al. 2014) in the R software environment (R Core Team 2017) to scale 
the cognitive data. We implement a unidimensional one-parameter partial credit model 
with the ConQuest parametrization (Adams et al. 2015). The dimension is science and 
contains in total 102 cognitive items. Following the PISA 2006 technical report OECD 
(2009), we fix the item parameters at their international values and apply the sampling 
weights when specifying the item response model. Finally, five normally approximated 
PVs are generated (Chang and Stout 1993) without the conditioning model (i.e., without 

Table 4 Partially balanced incomplete block design for the 19 questionnaire scales

A “1” denotes the presence of the scale in the cluster, “0”, othersize

Form Scales

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0

2 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0

3 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0

4 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1

5 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0

6 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1

7 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1

8 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0

9 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1

10 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0

11 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1

12 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1

13 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0

14 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1

15 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0

16 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1

17 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0

18 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0

19 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1
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conditioning on the background information). In contrast with Weirich et  al. (2014) 
which used the weighted maximum likelihood estimates (WLE) as proxies for individual 
proficiency scores to impute the CQ in the following step, we directly use the initial PVs 
that are generated in this step.5

Imputing questionnaire data

The second step is to impute the CQ missing data. For each matrix sampling design, 
we implement SMI and MMI for the CQ missing data using predictive mean matching 
(PMM) via the R package MICE (van Buuren and Groothuis-Oudshoorn 2010). Previous 
research (Kaplan and Su 2016; Kaplan and McCarty 2013) has found predictive mean 
matching to be quite good with respect to meeting the requirements for the validity of 
statistical matching and imputation set down by Räassler (2002).

Predictive mean matching

Following van Buuren (2012), (see also; Kaplan and Su (2016)), predictive mean match-
ing is implemented through a fully conditional specification approach that uses a uni-
variate regression model consistent with the scale of the variable with missing data to 
provide predicted values of the missing data given the observed data. Once a variable 
of interest is filled-in, that variable, along with the variables for which there is complete 
data, is used in a sequence to fill in another variable. Once the sequence is completed for 
all variables with missing data, the posterior distributions of the regression parameters 
are obtained via Gibbs sampling and the process is started again. The algorithm can run 
these sequences simultaneously M number of times obtaining M imputed data sets.

The PMM algorithm can be outlined as follows. Let Xobs be the predictors with 
observed data based on n1 observations ( i = 1, 2, . . . , n1 ), and let Xmiss be the predictors 
with missing data on a target variable y based on n0 observations ( j = 1, 2, . . . , n0).

1. Obtain β̂ based on Xobs and let σ̃ 2 be a draw based on the deviations 
(yobs − Xobsβ̂)

′(yobs − Xobsβ̂)/g̃ , where g̃ is a draw from a χ2 distribution.
2. Draw β̃ = β̂ + σ̃ z̃1V

1/2 , where V 1/2 is the square root of the Cholesky decomposi-
tion of the cross-products matrix S = X ′

obsXobs , and z1 is a p-dimensional vector of 
N(0, 1) random variates.

3. Calculate δ̃(i, j) = |Xobs,[i]β̂ − Xmiss,[j]β̃| ; i = 1, 2, . . . , n1 , j = 1, 2, . . . , n0.
4. Construct n0 sets Wj , each containing d candidate donors from yobs , such that 

∑

d δ̃(i, j) is minimum. Break ties randomly.
5. Randomly draw one donor ij from Wj for j = 1, 2, . . . , n0.
6. Impute ỹj = yij , for j = 1, 2, . . . , n0.

The imputation model includes all 34 scales, school ID, cluster ID and the five initial PVs 
that were generated in the first step. The interaction terms between gender and all the 
other scales were also included and passive imputation was used. Passive imputation is a 
method for imputing functions (e.g. transformations or interactions) among incomplete 

5 Preliminary analyses using WLEs show very little substantive difference.
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variables when both the original and transformed variables are needed in the imputation 
models. For PV generation, the original variables and interactions are required and thus 
missing on each requires passive imputation (see van Buuren (2012), for more informa-
tion). For the single imputation, we obtain one complete CQ data set and for the multi-
ple imputations we obtain five complete CQ data sets.

Generating final PVs

In the third step, we generate the final PVs conditioning on the imputed CQ data set. 
The item response model is the same as the calibration step except for conditioning 
on all the CQ variables in Table  1. Five normally approximated PVs are generated 
using one complete CQ data set. Thus for the MMI approach, we generate 25 PVs 
using the five imputed data sets. The generated PVs are all placed on the PISA scale 
(OECD 2009, p. 246). The final PVs are then used in the subsequent analyses.

Analysis

In the analysis step, we are interested in (1) how the distributions of the PVs under the 
six simulation conditions differ from the distributions of the PVs that are generated 
from the original questionnaire data; (2) how the correlations of CQ variables under 
the six conditions differ from the original questionnaire data; and (3) how regression 
coefficients differ across the six conditions compared to regression results from the 
original data.

To assess the distributions of PVs under the three planned missing data designs and 
two imputation approaches, we use the PVs conditioning on the original CQ data as 
the baseline comparison. The procedure for generating the PVs is the same as in the 
previous step: five PVs are generated by conditioning on the original data with all 
scales shown in Table 1. We calculate the mean and the standard errors of the PVs. 
The mean of PVs is simply the average across the five or 25 PVs. The standard errors 
under the SMI approach is pooled using Rubin’s rules (1987). The standard error 
under the MMI approach is pooled using the modified combining rules (Rubin 2003). 
In addition, we also conduct Kolmogorov Smirnov tests to compare the distributions 
of PVs.

Modified combining rules

Following Rubin (2003), the modified combining rules are as follows: let Q rep-
resent a quantity of interest, let Q̂(m,n) represent the mean estimate of the mth PV 
(m = 1, 2, . . .M) , and let n = 1, 2, . . .N  be the nth imputation of the CQ. Then,

is the overall average PV across imputations and nests. A vector of N mean estimates 
over the M PVs within each nest can be formed as

(1)Q̄ =
1

NM

N
∑

n=1

M
∑

m=1

Q̂(n,m)
,
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Let Ū represent the average of the variance estimates over the N nests and M imputa-
tions, written as

Let MS(b) be the between-nest mean square,

and let MS(w) be the within-nest mean square

Then, as shown by Rubin (2003), the total imputation variance (Q − Q̄) can be estimated 
by

We calculate the pairwise correlations among all CQ scales, including those between 
CQ variables and PVs. Because there are multiply imputed CQ data sets under MMI 
approach, we take the average of the correlations across the data sets. Then, the bias 
in correlations is calculated as the difference between the averaged correlations and the 
true correlations from the original data. As a baseline for comparison, we use the corre-
lations from the original CQ data.

To assess the regression coefficients under the six conditions, we conduct multiple 
regression analyses by regressing the multiple PVs on the selected scales. Note that we 
intentionally chose an analytic model which is simpler than the model that is used to 
generate PVs to reflect the realistic situation in which the researcher may not be aware of 
the full set of variables that were used in the conditioning model and is instead focusing 
his/her attention on a small set of theoretically motivated variables.

In the regression analysis, student sampling weights are added to reflect the complex 
sampling design of PISA 2006 (see OECD (2009), for more details). We then pool the 5 
or 25 regression analyses according to Rubin’s rules (1987; 2003, respectively). To have 
a baseline to compare to, we use the coefficients and standard errors from the regres-
sion analysis based on the original data (with the same regression model). We calculate 
the standardized bias of the coefficient estimates as the difference between the pooled 
estimates and the counterpart estimates based on the original data, standardized by the 
standard deviation of the outcome variable. We calculate the ratio of variances as the 

(2)Q̄n =
1

M

M
∑

m=1

Q̂(n,m)
.

(3)Ū =
1

NM

N
∑

n=1

M
∑

m=1

U (n,m)
.

(4)MS(b) =
M

N − 1

N
∑

n=1

(Q̄n − Q̄)2,

(5)MS(w) =
1

N (M − 1)

N
∑

n=1

M
∑

m=1

(Q̄(n,m) − Q̄m)
2
.

(6)T = Ū +
1

M

(

1+
1

N

)

MS(w) +

(

1+
1

M

)

MS(b).
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squared pooled standard errors under each condition over the squared standard errors 
from the original data. It is expected that the ratio of the variances should be greater 
than one, since the standard errors under the six conditions must reflect the uncertainty 
due to the generation of PVs or imputation of the CQ data. The magnitude of the ratio 
depends on the choice of the design and the uncertainty from the generation of PVs or 
imputation of the CQ.

Results
In this section we first present the results of the marginal distributions of the PVs. This 
is followed by a presentation of the correlation bias. Finally, we present the results of 
regression analysis. We show that the marginal distributions of the PVs under the six 
simulation conditions do not differ from those that are generated from the original 
questionnaire data. The correlations among CQ variables differ across designs but not 
the methods. The estimates of regression coefficients differ across the design and the 
methods.

Marginal PV distributions

The means and standard errors of PVs for the original data and under the six conditions 
(three designs × two imputation approaches) are presented in Table 5 and plots of the 
densities of PVs are shown in Fig. 1. Table 6 shows the p values of Kolmogorov–Smirnov 
tests when comparing the first PV under each of the six simulation conditions to the 
first PV of the baseline condition. We observe that the means of the marginal distribu-
tions are virtually identical across the designs and the methods. This result is consistent 
with Kaplan and Su (2016). However, in this case, we do observe sizably larger pooled 

Table 5 Pooled mean and standard error of PVs

Design Approach Pooled mean Pooled SE

Original design 489.004 216.964

Two-form design SMI 489.111 141.671

MMI 489.105 355.791

Three-form design SMI 489.110 120.215

MMI 489.253 388.075

PBIB SMI 489.070 182.998

MMI 489.228 322.087

Table 6 Kolmogorov–Smirnov tests

The Kolmogorov–Smirnov test compares the distribution of the first PV from each simulation condition (6 in total = 2 
approaches × 3 designs) with the first PV from the original complete data (H0: the two sample distributions are drawn from 
the same distribution)

Design p value

Two-form SMI vs. original 0.79

Two-form MMI vs. original 0.94

Three-form SMI vs. original 0.80

Three-form MMI vs. original 0.93

PBIB SMI vs. original 0.86

PBIB MMI vs. original 0.98
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standard errors from MMI versus SMI across designs. This is not unexpected insofar as 
MMI accounts for greater uncertainty in the imputation process. Interestingly, because 
the single imputation approach does not take full account of the uncertainty of the 
planned missing data, the standard errors from SMI method are smaller than from the 
original design. We also notice that the pooled standard errors are different across the 
designs due to the planned missing data patterns. The Kolmogorov-Smirnov test results 
show that the distribution of the first PVs are not significantly different from the PV of 
the original data. 

Correlation bias

For the SMI and MMI approaches under each planned missing data design we calculate 
the pairwise correlations among all CQ scales, including those between CQ variables 
and PVs. In order to compute the bias in correlations, we use the correlations of the 
original CQ as the true correlation values. The bias in correlations is calculated as the 
difference between the averaged correlations across multiple imputed data sets and the 
true correlations from the original data.

Figures  2, 3, and 4 plot the correlation biases among CQ variables under MMI 
against the correlation bias for SMI across the two-form, three-form, and PBIB 
designs, respectively. We observe that the correlation bias is substantially lower for 
the three-form design implemented in PISA 2012, compared to the two-form and 
PBIB design. We find the PBIB design to perform better with respect to correlation 

Fig. 1 Density plots of PVs under the three designs and two approaches
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bias compared to the two-form design, even though the overall amount of missing 
data for these two designs are the same. Little difference is found between the SMI 
or MMI approaches with respect to correlation bias across the planned missing data 
designs. For the correlations between CQ variables and PVs, we found no difference 
across the designs and the methods.6

Fig. 2 Two-form design: correlation bias among the rotation variables

Fig. 3 Three-form design: correlation bias among the rotation variables.

6 Raw data tables of the correlation biases are available on request.
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Regression analysis

Figure 5 presents the standardized bias in the estimated regression coefficients across 
the designs for SMI and MMI respectively. The scales to the left of the vertical lines in 
each plot are the variables in the common block. In Fig. 5 we observe for both SMI and 
MMI methods, less bias is found for scales in the common block compared to scales in 
the rotated blocks because variables in the common block are not part of the planned 
missing data. As with the correlation bias results, the three-form design implemented 
in PISA 2012 shows the least amount of bias in the regression coefficients. For the SMI 
method, all variables in three-form design have the standardized biases within 0.08 in 
absolute value, followed by 93% of the variables in PBIB design and 87% of the variables 
in the two-form design. For the MMI method, the three-form design and PBIB design 
have standardized biases for all variables within 0.08 in absolute value, and only 90% in 
the two-form design. In addition the two-form design produces several more extreme 
biased coefficients, as can be seen in the scales SCINTACT, SCAPPLY, and SCHANDS.

Figure 6 presents the results of standard errors of the regression coefficients for the 
SMI and MMI methods. The plots show the ratio of the squared standard errors of 
regression coefficients from the three rotation designs over the original design. First, 
we observe almost all the ratios are larger than one as expected because the standard 
errors from the rotation designs have to account for the uncertainty due to missing data, 
while the original design does not contain any missing data, resulting in smaller stand-
ard errors. Second, we observe that the ratios of variables are much larger using MMI 
method than SMI method. This is also expected because multiple imputation results in 
larger standard errors than the single imputation. Third, for the scales in the common 
block, the ratios are much closer to one than the scales in rotation blocks because there 
is no missing data in the common block scales. Finally, across the designs, we observe 
that the ratios from the three-form design are smaller than those for the PBIB design 
and the two-form design. For the SMI method, none of the standard errors from the 

Fig. 4 PBIB design: correlation bias among the rotation variables



Page 17 of 31Kaplan and Su  Large-scale Assess Educ  (2018) 6:6 

three-form design is 100% larger than from the original design, however 30% of the 
ratios in the PBIB design and 10% in the two-form design are larger than two. For the 
MMI method, the two-form design produces much larger standard errors than the other 
two designs, with 50% standard errors at least two times larger than the original design, 
followed by 47% in the PBIB design and 10% in the three-form design.7

Overall, due to less missing data, the three-form design produces less bias in the 
regression coefficients and smaller standard errors than the PBIB design. The PBIB 
design still performs better than the two-form design even though they have the same 
amount of missing data. This is because the PBIB design allows all pairs of scales to have 
data and so the correlations among all pairs of scales can be preserved, which is not the 
case with the two-form design.

Fig. 5 Regression coefficient estimates under SMI and MMI approaches

Fig. 6 Standard errors of the regression coefficients under SMI and MMI approaches

7 Raw data tables of the regression and standard error biases are available on request.
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Conclusions
This paper expanded on earlier work by Weirich et al. (2014) in two ways. First, we 
showed that it is possible to use PVs simply and directly via nested multiple imputa-
tion. Consistent with the results of Weirich et al. (2014), we found that nested mul-
tiple imputation with PVs provides considerable bias reduction as expected under 
the framework of congenial missing data models. Also, consistent with Weirich et al. 
(2014), our findings showed relatively similar results for SMI and MMI. It should be 
pointed out that it is possible to implement a procedure that combines the PVs and 
CQ in one algorithm for simultaneous imputation (see Aßman et  al. (2015)). The 
approach of Aßman et al. (2015) was studied under general missing data in the CQ 
but should be compared to the SMI and MMI approaches in the context of planned 
missing data in future studies. Second, we showed that the three-form design as 
implemented in PISA 2012 performed better in terms of correlation and regression 
bias reduction compared to the PBIB design examined in Kaplan and Su (2016) and 
the two-form design of Adams et  al. (2013). The bias reduction in the partial bal-
anced incomplete design is still better than what is achieved under the two-form 
design with the same overall amount of missing data. Further studies on investi-
gating the variations of incomplete block designs for CQs are still needed because 
there are many other design possibilities (e.g., amount of missing data, missing-
ness on items within scales etc.) that may be well-suited to large-scale educational 
assessments.

To conclude, the cumulative research on multiple imputation methods (Schafer and 
Graham 2002; Reiter and Raghunathan 2007; Harel 2007; Rubin 2003) applied to context 
questionnaires (Aßman et al. 2015; Adams et al. 2013; Kaplan and Su 2016; Weirich et al. 
2014), shows relatively minimal impact on the marginal distributions of PVs and the 
joint relations of PVs with context questionnaire scales. The present study adds to the lit-
erature by comparing three planned missing data designs under two approaches to mul-
tiple imputation. Given that a common concern facing most national and international 
large-scale assessments is the desire to present as much content as possible without 
over-burdening the participants in the survey and furthermore given increased interest 
in the so-called “non-cognitive” outcomes of education we argue that the approach to 
questionnaire matrix sampling and imputation described in this paper should be given 
serious consideration.
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Appendix A

# ::::::::::::::::::::::::::::::::::::::::::::::
# :::::::::Functions for PV generation::::::::::
# ::::::::::::::::::::::::::::::::::::::::::::::

## These are the functions and data that need to run before simulations

library(foreign)
library(TAM)
library(mice)
setwd('~/Dropbox/PISA')

# variable names
var.c <- c('PROGN', 'ST01Q01', 'AGE', 'ST04Q01', 'BMMJ', 'BFMJ', 'BSMJ',
                'MISCED', 'FISCED', 'IMMIG', 'ST11Q04', 'ST12Q01', 
'DEFFORT',
                 'CULTPOSS', 'HEDRES', 'WEALTH')
var1 <- c('CARINFO', 'CARPREP', 'ENVAWARE', 'INSTSCIE', 'JOYSCIE',
          'SCIEFUT', 'SCINTACT', 'SCINVEST', 'SCSCIE')
var2 <- c('ENVOPT', 'ENVPERC', 'GENSCIE', 'INTSCIE',
           'PERSCIE', 'RESPDEV', 'SCAPPLY', 'SCHANDS','SCIEACT', 
'SCIEEFF')
var0 <- c('AGE', 'ST04Q01', 'BMMJ', 'BFMJ', 'BSMJ', 'IMMIG', 'DEFFORT', 
'CULTPOSS', 'HEDRES', 'WEALTH', var1, var2)

# Load raw data
std <- read.spss('student_context_USA06.sav', to.data.frame = T) # 
questionnaire 
cog <- read.spss('COG_USA06.sav', to.data.frame = T)
 
names(cog)
dim(std)
names(std)

# attach bookid in std
cog <- cog[order(as.numeric(cog$STIDSTD)), ]
sum(cog$STIDSTD != std$STIDSTD)
std$BOOKID <- cog$BOOKID

#transform to numeric
cog1 <- as.data.frame(sapply(cog, as.numeric) - 1)
dim(cog1)

# missing checking
cog2 <- cog1[, 8:275]
colnames(cog2)[sapply(cog2, function(x) sum(is.na(x)) == 5611)]
## no reading cognitive test for USA
sapply(cog2, function(x) sum(is.na(x)))

# Load Original CQ 
load('con_origin06_pmm_m1.RData') # original CQ impputed (no item 

missing)
sapply(con.or, function(x) sum(is.na(x)))

# Load rotated PBIB CQ
load(file = 'PISA06_CQ_PBIB.RData')
sapply(con.pbib, function(x) sum(is.na(x))) # no item missing PBIB CQ

# load rotated Adams CQ
load(file = 'PISA06_rotated_Adams.RData') # no item missing Adams CQ
sapply(con.adam, function(x) sum(is.na(x)))

# load rotated 3form CQ
load(file = 'PISA06_CQ_3form.RData') # no item missing 3form CQ
sapply(con.f3, function(x) sum(is.na(x)))



Page 20 of 31Kaplan and Su  Large-scale Assess Educ  (2018) 6:6 

# ---------------------------------------------- imp.pv ----------------
------------------------------
imp.pv <- function(conpv, m){
        # imp.1pv ... impute the rotated CQ with 1PV with sex 
interaction, return a list of 5 datasets
        # conpv ... data frame with CQ + 1PV
       # m ...number of multiple imputations
 
   # attach interactions with sex
   var.r <- c('CARINFO', 'CARPREP', 'ENVAWARE', 'INSTSCIE', 
'JOYSCIE',
          'SCIEFUT', 'SCINTACT', 'SCINVEST', 'SCSCIE',
          'ENVOPT', 'ENVPERC', 'GENSCIE', 'INTSCIE',
           'PERSCIE', 'RESPDEV', 'SCAPPLY', 'SCHANDS','SCIEACT', 
'SCIEEFF')
    nam.int <- paste("ST04Q01.1.", var.r, sep = '')
   int <- matrix(NA, nrow = nrow(conpv), ncol = length(var.r))
   colnames(int) <- nam.int
   conpvi <- cbind(conpv, int)

   # multiple imputation 
   ini <- mice(conpvi, maxit = 0, pri = F)
   meth <- ini$meth
    meth[nam.int] <- paste('~I(ST04Q01.1*', var.r, ')', sep = '')
    meth[colnames(conpv)] <- rep('fastpmm', ncol(conpv))   
    pred <- ini$pred
    pred[var.r, nam.int] <- 0
    pred[, c('STIDSTD', 'BOOKID')] <- 0
  out.imp <- mice(conpvi, pred = pred, meth = meth, m = m)

    # extract imputed dataset
   conpv.imp <- lapply(1:m, complete, x = out.imp)
   invisible(conpv.imp)
}

# ---------------------------------------------- PV --------------------

--------------------------
PV.imp <- function(con.imp, w) {
      # PV... generate 5 PVs for one conditional questionnaire with no 
missing data (return matrix of 5 pvs)
     # con.imp ... imputed CQ with no missng data 
 
# ******* Prepare conditioning variables for original con data *****
# ::::: Direct conditioning variables ::::
# booklet id
table(con.imp$BOOKID)
con.imp$BOOKID <- relevel(factor(con.imp$BOOKID), ref = '13')
con.imp$BOOKID <- relevel(factor(con.imp$BOOKID), ref = '12')
contrasts(con.imp$BOOKID) <- contr.sum(13); contrasts(con.imp$BOOKID) # 
deviation coding
# school
max(table(con.imp$SCHOOLID)) # 00070 is the largest school
con.imp$SCHOOLID <- relevel(factor(con.imp$SCHOOLID), ref = '00070')
# direct conditioning variables
dvar <- con.imp[, c('BOOKID', 'SCHOOLID')]

# ::::: combine direct and indirect conditioning variables ::::::
var.c <- c('PROGN', 'ST01Q01', 'AGE', 'ST04Q01', 'BMMJ', 'BFMJ', 'BSMJ',
                'MISCED', 'FISCED', 'IMMIG', 'ST11Q04', 'ST12Q01', 
'DEFFORT',
                 'CULTPOSS', 'HEDRES', 'WEALTH')
var1 <- c('CARINFO', 'CARPREP', 'ENVAWARE', 'INSTSCIE', 'JOYSCIE',
          'SCIEFUT', 'SCINTACT', 'SCINVEST', 'SCSCIE')
var2 <- c('ENVOPT', 'ENVPERC', 'GENSCIE', 'INTSCIE',
           'PERSCIE', 'RESPDEV', 'SCAPPLY', 'SCHANDS','SCIEACT', 
'SCIEEFF')
con.var <- cbind(dvar, con.imp[, c(var.c, var1, var2)])
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## no missing ensures con.mat the same row dim as con.var
con.mat <- model.matrix(~.,  con.var)[, -1]
con.mat <- con.mat[, apply(con.mat, 2, function(x) length(table(x))) != 
1] # get rid of no variance varibales

# ****** Unidimensional 1PL PV generation *****
# science dimention parameters
par3 <- read.table('06par3.txt')
nam.sc3 <- names(cog2)[c(77:179)]
sum(par3$V1 != nam.sc3)
par.st3 <- par3[par3$V3 < 3, 3] # extract from the second column data 
the step parameter
xsi3 <- c(par3[, 2], par.st3)
xsi3 <- cbind(seq(1,length(xsi3)), xsi3)
# scaling

out <- tam.mml(resp = cog2[, nam.sc3], xsi.fixed = xsi3, Y = con.mat, 
irtmodel = 'PCM2', pweights = w)
pv <- tam.pv(out, nplausible = 5 , ntheta = 1000, normal.approx=TRUE)

# Standardize PV 
pv <- cbind(pv$pv$PV1.Dim1, pv$pv$PV2.Dim1, pv$pv$PV3.Dim1, 
pv$pv$PV4.Dim1, pv$pv$PV5.Dim1)
pv <- apply(pv, 2, function(x) ((x - 0.1797) / 1.0724) * 100 + 500)
colnames(pv) <- c('PV1', 'PV2', 'PV3', 'PV4' ,'PV5')

invisible(pv)
}
# ---------------------------------------------- PV --------------------
--------------------------

# -------------------------------------------- pool regression ---------
-------------------------------------

PVreg.or <- function(pv, con, var, w){
     # PVreg.or ... for CQ no missingness, pool the regression results 
(output is a list of pooled results)
     # pv ... final PVs, output from PV.imp()
     # con ... conditional questionnaire data
     # var ... variables in the regression model 
     # w ... sampling weights in lm
 
     # ::::::: pool regression ::::::::::
     conpv <- data.frame(cbind(con, pv))
     out1 <- lm(conpv$PV1 ~ . , data = conpv[, var], weights = w)
     out2 <- lm(conpv$PV2 ~ . , data = conpv[, var], weights = w)
     out3 <- lm(conpv$PV3 ~ . , data = conpv[, var], weights = w)
     out4 <- lm(conpv$PV4 ~ . , data = conpv[, var], weights = w)
     out5 <- lm(conpv$PV5 ~ . , data = conpv[, var], weights = w)

     outp <- as.mira(list(out1, out2, out3, out4, out5))
     out <- summary(pool(outp))
     R2 <- c(summary(out1)$r.squared, summary(out2)$r.squared, 
summary(out3)$r.squared,
           summary(out4)$r.squared, summary(out5)$r.squared)
     R2.p <- pool.r.squared(outp)
     list(out, R2 = R2, Pool.R2 = R2.p)
}

sub.pool <- function(conpv, var, w){
    # sub.pool... put together lm results of single imputed CQ 
(regressed on 5 PVs), return a list of lm output
    # conpv ... one imputed CQ with corresponding 5 PVs
     # var ... variables in the regression model 
     # w ... sampling weights in lm
 
     out1 <- lm(conpv$PV1 ~ . , data = conpv[, var], weights = w)
     out2 <- lm(conpv$PV2 ~ . , data = conpv[, var], weights = w)
     out3 <- lm(conpv$PV3 ~ . , data = conpv[, var], weights = w)
     out4 <- lm(conpv$PV4 ~ . , data = conpv[, var], weights = w)
     out5 <- lm(conpv$PV5 ~ . , data = conpv[, var], weights = w)
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     outp <- list(out1, out2, out3, out4, out5)
    invisible(outp)
}

PVreg.rot <- function(conpv.list, var, w){
     # PVreg.or ... for rotated CQ, pool the regression results (output 
is a matrix of pooled results) using sub.pool()
     # conpv.list ... a list of multiple imputed CQ with 5 PVs
     # var ... variables in the regression model 
     # w ... sampling weights in lm

     # ::::::: pool regression ::::::::::
     outl <- lapply(conpv.list, sub.pool, var = var, w = w)
    outp<- as.mira(list(outl[[1]][[1]], outl[[1]][[2]], outl[[1]]
[[3]], outl[[1]][[4]], outl[[1]][[5]],
                outl[[2]][[1]], outl[[2]][[2]], outl[[2]]
[[3]], outl[[2]][[4]], outl[[2]][[5]],
                outl[[3]][[1]], outl[[3]][[2]], outl[[3]]
[[3]], outl[[3]][[4]], outl[[3]][[5]],
                outl[[4]][[1]], outl[[4]][[2]], outl[[4]]
[[3]], outl[[4]][[4]], outl[[4]][[5]],
                outl[[5]][[1]], outl[[5]][[2]], outl[[5]]
[[3]], outl[[5]][[4]], outl[[5]][[5]]))
     out <- summary(pool(outp))
     R2.p <- pool.r.squared(outp)
     list(out, Pool.R2 = R2.p)
}
# -------------------------------------------- pool regression ---------
-------------------------------------
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Appendix B

# ::::::::::::::::::::::::::::::::::::::::::::::::::::
# :::::::::: Secondary analysis on imputed CQs :::::::
# ::::::::::::::::::::::::::::::::::::::::::::::::::::

# please run the function file first!

library(foreign)
library(TAM)
library(mice)

setwd('Dropbox/PISA')

# =========================== SMI MMI (with 5pvs) save results 
===========================
# SMI MMI and three designs (with 5pvs in imputation) 

# :::::::::::::: scaling and generate the original 5pv to put in 
imputation :::::::::::::
# science dimention parameters
par3 <- read.table('06par3.txt')
nam.sc3 <- names(cog2)[c(77:179)]
sum(par3$V1 != nam.sc3)
par.st3 <- par3[par3$V3 < 3, 3] # extract from the second column data 
the step parameter
xsi3 <- c(par3[, 2], par.st3)
xsi3 <- cbind(seq(1,length(xsi3)), xsi3)
# scaling
out <- tam.mml(resp = cog2[, nam.sc3], xsi.fixed = xsi3, irtmodel = 
'PCM2', pweights = std$W_FSTUWT)

# PV
pv <- tam.pv(out, nplausible = 5 , ntheta = 1000, normal.approx=TRUE)
# Standardize PV 
pv <- cbind(pv$pv$PV1.Dim1, pv$pv$PV2.Dim1, pv$pv$PV3.Dim1, 
pv$pv$PV4.Dim1, pv$pv$PV5.Dim1)
pv <- apply(pv, 2, function(x) ((x - 0.1797) / 1.0724) * 100 + 500)
colnames(pv) <- c('PV1', 'PV2', 'PV3', 'PV4' ,'PV5')

# :::::::::::::::: origin ::::::::::::::::
outo <- PVreg.or(pv, con.or, var0, w = std$W_FSTUWT)

# :::::::::::::::: PBIB ::::::::::::::::
# combine rotated CQ with pv5
conpv.pbib5 <- cbind(con.pbib, pv) # 5 PVs

# 2. imput rotated CQ with pv5
imp.pbib1 <- imp.pv(conpv.pbib5, m = 1)
imp.pbib5 <- imp.pv(conpv.pbib5, m = 5)

# 3. Generate 5 PVs for each

pv.b1 <- lapply(imp.pbib1, PV.imp, w = std$W_FSTUWT) 
pv.b5 <- lapply(imp.pbib5, PV.imp, w = std$W_FSTUWT) 

# combine each imputed CQ with corresponding PV
expv5 <- c('PV1','PV2','PV3','PV4','PV5') # exclude the 5 cheap pv

imp.b1 <- cbind(imp.pbib1[[1]], pv.b1[[1]])
imp.b5 <- list()
for(i in 1:5){imp.b5 [[i]] <- cbind(imp.pbib5[[i]][, 
!is.element(colnames(imp.pbib5[[1]]), expv5)], pv.b5[[i]])}

# 4. pool regression
# SMI (1st dataset * 5PVs)
outb1 <- PVreg.or(pv.b1[[1]], imp.b1, var0, std$W_FSTUWT)
#MMI (5datasets* 5PVs for each)
outb5 <- PVreg.rot(imp.b5, var0, w = std$W_FSTUWT)
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# :::::::::::::::: Adams ::::::::::::::::
# combine rotated CQ with pv5
conpv.adam5 <- cbind(con.adam, pv) # 5 PVs

# 2. imput rotated CQ with pv5
imp.adam1 <- imp.pv(conpv.adam5, m = 1)
imp.adam5 <- imp.pv(conpv.adam5, m = 5)

# 3. Generate 5 PVs for each
pv.a1 <- lapply(imp.adam1, PV.imp, w = std$W_FSTUWT) 
pv.a5 <- lapply(imp.adam5, PV.imp, w = std$W_FSTUWT) 

# combine each imputed CQ with corresponding CQ
expv5 <- c('PV1','PV2','PV3','PV4','PV5') # exclude the 5 cheap pv

# combine each imputed CQ with corresponding PV
imp.a1 <- cbind(imp.adam1[[1]], pv.a1[[1]])
imp.a5 <- list()
for(i in 1:5){imp.a5 [[i]] <- cbind(imp.adam5[[i]][, 
!is.element(colnames(imp.adam5[[1]]), expv5)], pv.a5[[i]])}

# 4. pool regression
# SMI (1st dataset * 5PVs)
outa1 <- PVreg.or(pv.a1[[1]], imp.a1, var0, std$W_FSTUWT)
#MMI (5datasets* 5PVs for each)
outa5 <- PVreg.rot(imp.a5, var0, w = std$W_FSTUWT)

# :::::::::::::::: 3form ::::::::::::::::
# combine rotated CQ with pv5
conpv.f5 <- cbind(con.f3, pv)

# 2. imput rotated CQ with pv5
imp.3f1 <- imp.pv(conpv.f5, m = 1)

imp.3f5 <- imp.pv(conpv.f5, m = 5)

# 3. Generate 5 PVs for each
pv.f1 <- lapply(imp.3f1, PV.imp, w = std$W_FSTUWT) 
pv.f5 <- lapply(imp.3f5, PV.imp, w = std$W_FSTUWT) 

# combine each imputed CQ with corresponding CQ
imp.f1 <- cbind(imp.3f1[[1]], pv.a1[[1]])
imp.f5 <- list()
for(i in 1:5){imp.f5 [[i]] <- cbind(imp.3f5[[i]][, 
!is.element(colnames(imp.3f5[[1]]), expv5)], pv.f5[[i]])}

# 4. pool regression
# SMI (1st dataset * 5PVs)
outf1 <- PVreg.or(pv.f1[[1]], imp.f1, var0, std$W_FSTUWT)
#MMI (5datasets* 5PVs for each)
outf5 <- PVreg.rot(imp.f5, var0, w = std$W_FSTUWT)

# save MMI results
save(pv, outo, imp.pbib1, imp.pbib5, pv.b1, pv.b5,
              imp.adam1, imp.adam5, pv.a1, pv.a5, 
              imp.3f1, imp.3f5, pv.f1, pv.f5, file = 
"Results61.Rdata")

# ================================= read results 
==========================================

load(file = "Results61.Rdata")
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# combine each imputed CQ with corresponding PV
expv5 <- c('PV1','PV2','PV3','PV4','PV5') # exclude the 5 cheap pv
imp.b1 <- cbind(imp.pbib1[[1]], pv.b1[[1]])
imp.b5 <- list()
for(i in 1:5){imp.b5 [[i]] <- cbind(imp.pbib5[[i]][, 
!is.element(colnames(imp.pbib5[[1]]), expv5)], pv.b5[[i]])}

imp.a1 <- cbind(imp.adam1[[1]], pv.a1[[1]])
imp.a5 <- list()
for(i in 1:5){imp.a5 [[i]] <- cbind(imp.adam5[[i]][, 
!is.element(colnames(imp.adam5[[1]]), expv5)], pv.a5[[i]])}

imp.f1 <- cbind(imp.3f1[[1]], pv.f1[[1]])
imp.f5 <- list()
for(i in 1:5){imp.f5 [[i]] <- cbind(imp.3f5[[i]][, 
!is.element(colnames(imp.3f5[[1]]), expv5)], pv.f5[[i]])}

# pool regression
outb1 <- PVreg.or(pv.b1[[1]], imp.b1, var0, std$W_FSTUWT)
outb5 <- PVreg.rot(imp.b5, var0, w = std$W_FSTUWT)

outa1 <- PVreg.or(pv.a1[[1]], imp.a1, var0, std$W_FSTUWT)

outa5 <- PVreg.rot(imp.a5, var0, w = std$W_FSTUWT)

outf1 <- PVreg.or(pv.f1[[1]], imp.f1, var0, std$W_FSTUWT)
outf5 <- PVreg.rot(imp.f5, var0, w = std$W_FSTUWT)

# ================================= Ploting PV distributions 
==========================================

lapply(pv.b1, range)
par(mfrow = c(3,2))
par(mar = c(5,4,2,1))

plot(0, pch='', xlim = c(100, 800), ylim = c(0, 0.005), xlab = 'PVs', 
ylab = 'Density', 
      main = 'Two-form design with SMI')
for (i in 1:5){
 lines(density(pv.a1[[1]][, i]))
}

plot(0, pch='', xlim = c(100, 800), ylim = c(0, 0.005), xlab = 'PVs', 
ylab = 'Density', 
      main = 'Two-form design with MMI')
for (i in 1:5){
 for(j in 1:5){
 lines(density(pv.a5[[i]][, j]))
 }
}

plot(0, pch='', xlim = c(100, 800), ylim = c(0, 0.005), xlab = 'PVs', 
ylab = 'Density', 
      main = 'Three-form design dewith SMI')
for (i in 1:5){
 lines(density(pv.f1[[1]][, i]))
}

plot(0, pch='', xlim = c(100, 800), ylim = c(0, 0.005), xlab = 'PVs', 
ylab = 'Density', 
      main = 'Three-form design with MMI')
for (i in 1:5){
 for(j in 1:5){
 lines(density(pv.f5[[i]][, j]))
 }
}

plot(0, pch='', xlim = c(100, 800), ylim = c(0, 0.005), xlab = 'PVs', 
ylab = 'Density', 
      main = 'PBIB design with SMI')
for (i in 1:5){
 lines(density(pv.b1[[1]][, i]))
}
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plot(0, pch='', xlim = c(100, 800), ylim = c(0, 0.005), xlab = 'PVs', 
ylab = 'Density', 
      main = 'PBIB design with MMI')
for (i in 1:5){
 for(j in 1:5){
 lines(density(pv.b5[[i]][, j]))
 }
}

# Table of pooled mean and se
matpv <- pv.b1[[1]]
lpv <-pv.b5
pool.mi <- function(matpv){
     # pool the standard error for single imputation with 5 PVs, input 
the matrix of 5 PVs
     m.g <- apply(matpv, 2, mean) # group mean
     m1 <- mean(m.g) #single mean

     var.g <- apply(matpv, 2, var)
     var1 <- mean(var.g) #single variance
     var.between <- sum((var.g - var1)^2) / (length(var.g) - 1)
     var.total <- var1 + (1+1/length(var.g))*var.between
     
     c(m1, sqrt(var.total)) 
} 

pool.nmi <- function(lpv){
     # pool the standard error for nested multiple imputation with 25 
PVs, input the list of 5 matrix PVs
     matpv <- cbind(lpv[[1]], lpv[[2]],lpv[[3]],lpv[[4]],lpv[[5]])
     n.nest <- length(lpv)
     n.group <- ncol(lpv[[1]])
     
    m.g <- apply(matpv, 2, mean) # group mean
     m1 <- mean(m.g) #single mean
     matm.g <- matrix(m.g, nrow = n.group, byrow = T)
     m.n <- apply(matm.g, 1, mean)
     
     var.g <- apply(matpv, 2, var)
     var1 <- mean(var.g) #single variance
     matvar.g <- matrix(var.g, nrow = n.group, byrow = T)
     var.n <- apply(matvar.g, 1, mean)
     var.between <- sum((var.n - var1)^2) * (n.group/(n.nest - 1))
     var.within <- (1/n.nest*(n.group-1)) * sum(sum((var.g - rep(var.n, 
each = n.group))^2))
     var.total <- var1 + (1/n.group)*(1+1/n.nest)*var.between + (1-
1/n.group)*var.within

     c(m1, sqrt(var.total)) 
     }  

o.pv <- pool.mi(pv)

b1.pv <- pool.mi(pv.b1[[1]])
b5.pv <- pool.nmi(pv.b5)

a1.pv <- pool.mi(pv.a1[[1]])
a5.pv <- pool.nmi(pv.a5)

f1.pv <- pool.mi(pv.f1[[1]])
f5.pv <- pool.nmi(pv.f5)
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tab.pv <- round(rbind(o.pv, b1.pv, b5.pv, a1.pv, a5.pv, f1.pv, f5.pv), 
3)
write.csv(tab.pv, "results6_pvpooled.csv")

# k-s test 
ks.test(pv[, 1], pv.a1[[1]][, 1])
ks.test(pv[, 1], pv.a5[[1]][, 1])
ks.test(pv[, 1], pv.b1[[1]][, 1])
ks.test(pv[, 1], pv.b5[[1]][, 1])
ks.test(pv[, 1], pv.f1[[1]][, 1])
ks.test(pv[, 1], pv.f5[[1]][, 1])

 # ================================= Plot correlation  
==========================================
# pool correlation between cq and pv
pool.cor1  <- function(imp1, pv1, var0){
  # average correlations for 5 PVs(list)and 1 imputed data set(list)
   imp.b0 <- sapply(imp1[[1]][, var0], as.numeric)
   corb <- apply(pv1[[1]], 2, function(x) cor(x,imp.b0))
   apply(corb, 1, mean)
}
 
pool.cor5 <- function(imp5, pv5, var0){
  # average correlations for 25 PVs and 5 data sets 
correspondingly
   imp.b0 <- list()
   for(i in 1:5){imp.b0[[i]] <- imp5[[i]][, var0]} # extract variables 
data only
   for(i in 1:5){imp.b0[[i]] <- sapply(imp.b0[[i]], as.numeric)} # to 
numeric
   corb <- list()
   mcorb <- list()
   for(i in 1:5){
   corb[[i]] <- apply(pv5[[i]], 2, function(x) cor(x,imp.b0[[i]])) # 
correlation of each data set with corresponding PVs
   mcorb[[i]] <- apply(corb[[i]], 1, mean) # avrage correlations

   mcorb <- cbind(mcorb[[1]], mcorb[[2]], mcorb[[3]], mcorb[[4]], 
mcorb[[5]]) #combine averaged correlations from 5 data sets
   apply(mcorb, 1, mean) # average across 5 data sets
   }
}

# pool correlation between cq 
acor1  <- function(imp1, var0){
  # correlations of CQ variables in 1 imputed data set(list)
   imp.b0 <- sapply(imp1[[1]][, var0], as.numeric)
   cor(imp.b0)
}
 
pool.acor5 <- function(imp5, var0){
  # average correlations of CQ variables in 5 data sets 
correspondingly
   imp.b0 <- list()
   for(i in 1:5){imp.b0[[i]] <- imp5[[i]][, var0]} # extract variables 
data only
   for(i in 1:5){imp.b0[[i]] <- sapply(imp.b0[[i]], as.numeric)} # to 
numeric
   corb <- list()
   mcorb <- list()
   for(i in 1:5){
   corb[[i]] <- cor(imp.b0[[i]])} # correlation of each data set
   acorb <- array(unlist(corb), dim = c(nrow(corb[[1]]), 
ncol(corb[[1]]), length(corb))) # to array
   apply(acorb, c(1,2), mean) 
}
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# original CQ
coror <- pool.cor1(list(con.or), list(pv), var0)
acoror <- acor1(list(con.or), c(var1, var2))

# PBIB
corb1 <- pool.cor1(imp.pbib1, pv.b1, var0)
corb5 <- pool.cor1(imp.pbib5, pv.b5, var0)
acorb1 <- acor1(imp.pbib1, c(var1, var2))
acorb5 <- pool.acor5(imp.pbib5, c(var1, var2))

# Adams
cora1 <- pool.cor1(imp.adam1, pv.a1, var0)
cora5 <- pool.cor1(imp.adam5, pv.a5, var0)
acora1 <- acor1(imp.adam1, c(var1, var2))
acora5 <- pool.acor5(imp.adam5, c(var1, var2))

# 3form
corf1 <- pool.cor1(imp.3f1, pv.f1, var0)
corf5 <- pool.cor1(imp.3f5, pv.f5, var0)
acorf1 <- acor1(imp.3f1, c(var1, var2))
acorf5 <- pool.acor5(imp.3f5, c(var1, var2))

# :::::: table ::::::: 
tab.cor <- round(cbind(coror, corb1, corb5, cora1, cora5, corf1, corf5), 
3)
write.csv(tab.cor, "results6_corpooled.csv")

tab.acor <- round(rbind(acorb1-acoror, acorb5-acoror, acora1-acoror, 
acora5-acoror, acorf1-acoror, acorf5-acoror), 3)
write.csv(tab.acor, "results6_acorpooled.csv")

# :::::::: plot ::::::::
# Plot bias in cor of PBIB vs Adams on PVs
bcor5 <- corb5-coror
bcor1 <- corb1-coror
acor5 <- cora5-coror
acor1 <- cora1-coror
fcor5 <- corf5-coror
fcor1 <- corf1-coror
round(cbind(bcor5, acor5, fcor5, bcor1, acor1, fcor1), 2)

bcor5 <- (acorb5-acoror)[upper.tri(acoror)]
bcor1 <- (acorb1-acoror)[upper.tri(acoror)]
acor5 <- (acora5-acoror)[upper.tri(acoror)]
acor1 <- (acora1-acoror)[upper.tri(acoror)]
fcor5 <- (acorf5-acoror)[upper.tri(acoror)]
fcor1 <- (acorf1-acoror)[upper.tri(acoror)]

# PBIB
par(mfrow = c(3,1))
range(bcor5)
par(mar = c(4.5, 4.5, 2.5, 1),  pty = 's')
plot(bcor5 ~ bcor1, pch = 16, main = 'PBIB Design: Correlations among 
Rotation Variables', xlab = 'Biases using SMI approach', 
     ylab = 'Biases using MMI approach', xlim = c(-.1, .1), ylim = 
c(-.1, .1), pty = 's', bty = 'l', cex = .8)
abline(h = 0, v = 0, lty = 3)

d.b <- density(bcor5, adjust = 1)
d.by <- d.b$y * .001 + par('usr')[3]
range(d.by)
polygon(y = d.b$x, x = d.by, col = 'grey70')

d.a <- density(bcor1, adjust = 1)
d.ay <- d.a$y * .001  + par('usr')[1]
range(d.ay)
polygon(y = d.ay, x = d.a$x, col = 'grey70')

# 2form
range(acor5)
par(mar = c(4.5, 4.5, 2.5, 1),  pty = 's')
plot(acor5 ~ acor1, pch = 16, main = 'Two-form Design: Correlations 
among Rotation Variables', xlab = 'Biases using SMI approach', 
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     ylab = 'Biases using MMI approach', xlim = c(-.7, .2), ylim = 
c(-.7, .2), pty = 's', bty = 'l', cex = .8)
abline(h = 0, v = 0, lty = 3)

d.b <- density(acor5, adjust = 1)
d.by <- d.b$y * .01 + par('usr')[3]
range(d.by)
polygon(y = d.b$x, x = d.by, col = 'grey70')

d.a <- density(acor1, adjust = 1)
d.ay <- d.a$y * .01  + par('usr')[1]
range(d.ay)
polygon(y = d.ay, x = d.a$x, col = 'grey70')

# 3form
range(fcor5)
par(mar = c(4.5, 4.5, 2.5, 1),  pty = 's')
plot(fcor5 ~ fcor1, pch = 16, main = 'Three-form Design: Correlations 
among Rotation Variables', xlab = 'Biases using SMI approach', 
     ylab = 'Biases using MMI approach', xlim = c(-.1, .1), ylim = 
c(-.1, .1), pty = 's', bty = 'l', cex = .8)
abline(h = 0, v = 0, lty = 3)

d.b <- density(fcor5, adjust = 1)
d.by <- d.b$y * .001 + par('usr')[3]
range(d.by)
polygon(y = d.b$x, x = d.by, col = 'grey70')

d.a <- density(fcor1, adjust = 1)
d.ay <- d.a$y * .001  + par('usr')[1]
range(d.ay)
polygon(y = d.ay, x = d.a$x, col = 'grey70')

# ======================================= Regression analysis 
==================================

# regression coef
est1 <- cbind(outb1[[1]][, 'est'] - outo[[1]][, 'est'], 
            outa1[[1]][, 'est'] - outo[[1]][, 'est'],
            outf1[[1]][, 'est'] - outo[[1]][, 'est']) / 107
colnames(est1) <- c('PBIB', '2form', '3form')
est5<- cbind(outb5[[1]][, 'est'] - outo[[1]][, 'est'], 
            outa5[[1]][, 'est'] - outo[[1]][, 'est'],
            outf5[[1]][, 'est'] - outo[[1]][, 'est']) / 107
colnames(est5) <- c('PBIB', '2form', '3form')

# stats
est <- est5
sum(abs(est[-1, 1]) < 0.05)  / length(est[-1, 1]) #pbib

sum(abs(est[-1, 2]) < 0.05)  / length(est[-1, 1]) #2f
sum(abs(est[-1, 3]) < 0.05)  / length(est[-1, 1]) #3f

# Standard errors
seratio1 <- cbind(outb1[[1]][, 'se']^2 / outo[[1]][, 'se']^2, 
            outa1[[1]][, 'se']^2 / outo[[1]][, 'se']^2, 
             outf1[[1]][, 'se']^2 / outo[[1]][, 'se']^2) # how much 
efficiency lost
colnames(seratio1) <- c('PBIB', '2form', '3form')
seratio5 <- cbind(outb5[[1]][, 'se']^2 / outo[[1]][, 'se']^2, 
            outa5[[1]][, 'se']^2 / outo[[1]][, 'se']^2, 
             outf5[[1]][, 'se']^2 / outo[[1]][, 'se']^2) # how much 
efficiency lost
colnames(seratio5) <- c('PBIB', '2form', '3form')
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# stats
seratio <- seratio5 
sum(seratio[-1, 1] > 2)  / length(seratio[-1, 1]) 
sum(seratio[-1, 2] > 2)  / length(seratio[-1, 1]) 
sum(seratio[-1, 3] > 2)  / length(seratio[-1, 1]) 

# ::::::::::: plot ::::::::::::::
par(mfrow = c(1,2))
par(mar = c(5,4,2,1))

# plots bias of est
matplot(x = 1:30, y = est1[-1, ], pch = 16:18, xlab = '', ylab = 
'Standardised Bias',
        main = 'Regression Coefficients (SMI)', xaxt = 'n', ylim = 
c(-0.2, 0.2))
abline(h = c(0), lty = 2)
abline(v = 11.5, lty = 2)
legend('topleft', c('PBIB design', 'Two-form design', 'Three-form 
design'), bty = 'n', pch = 16:18,  col = 1:3)
axis(1, at = 1:30, las = 3, labels = rownames(est1)[-1], cex.axis = 0.5)
text(x = c(5, 20) , y = c(-0.2, -0.2), labels = c('Common part', 
'Rotation part'), cex = 0.8)

matplot(x = 1:30, y = est5[-1, ], pch = 16:18, xlab = '', ylab = 
'Standardised Bias',
        main = 'Regression Coefficients (MMI)', xaxt = 'n', ylim = 
c(-0.2, 0.2))
abline(h = c(0), lty = 2)
abline(v = 11.5, lty = 2)
legend('topleft', c('PBIB design', 'Two-form design', 'Three-form 
design'), bty = 'n', pch = 16:18,  col = 1:3)
axis(1, at = 1:30, las = 3, labels = rownames(est5)[-1], cex.axis = 0.5)
text(x = c(5, 20) , y = c(-0.2, -0.2), labels = c('Common part', 
'Rotation part'), cex = 0.8)

# plots bias of se
matplot(x = 1:30, y = seratio1[-1, ], pch = 16:18, xlab = '', ylab = 
'Ratio of Variances',
        main = 'Standard Errors (SMI)', xaxt = 'n', ylim = c(0.5, 9))
abline(h = 1, lty = 2)
abline(v = 11.5, lty = 2)
legend('topleft', c('PBIB design', 'Two-form design', 'Three-form 
design'), bty = 'n', pch = 16:18,  col = 1:3)
axis(1, at = 1:30, las = 3, labels = rownames(est1)[-1], cex.axis = 0.5)
text(x = c(5, 20) , y = c(-1, -1), labels = c('Common part', 'Rotation 
part'), cex = 0.8)

matplot(x = 1:30, y = seratio5[-1, ], pch = 16:18, xlab = '', ylab = 
'Ratio of Variances',
        main = 'Standard Errors (MMI)', xaxt = 'n', ylim = c(0.5, 9))
abline(h = 1, lty = 2)
abline(v = 11.5, lty = 2)
legend('topleft', c('PBIB design', 'Two-form design', 'Three-form 
design'), bty = 'n', pch = 16:18,  col = 1:3)
axis(1, at = 1:30, las = 3, labels = rownames(est5)[-1], cex.axis = 0.5)
text(x = c(5, 20) , y = c(-1, -1), labels = c('Common part', 'Rotation 
part'), cex = 0.8)

# ::::::::::: Table ::::::::::::::
write.csv(round(rbind(est1, est5), 3), 'results6_coefpooled.csv')
write.csv(round(rbind(seratio1, seratio5), 3), 'results6_sefpooled.csv')
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